Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jul;4(4):453-65.
doi: 10.1111/j.1467-7652.2006.00195.x.

Genetic modification of cassava for enhanced starch production

Affiliations
Free article

Genetic modification of cassava for enhanced starch production

Uzoma Ihemere et al. Plant Biotechnol J. 2006 Jul.
Free article

Abstract

To date, transgenic approaches to biofortify subsistence crops have been rather limited. This is particularly true for the starchy root crop cassava (Manihot esculenta Crantz). Cassava has one of the highest rates of CO(2) fixation and sucrose synthesis for any C3 plant, but rarely reaches its yield potentials in the field. It was our hypothesis that starch production in cassava tuberous roots could be increased substantially by increasing the sink strength for carbohydrate. To test this hypothesis, we generated transgenic plants with enhanced tuberous root ADP-glucose pyrophosphorylase (AGPase) activity. This was achieved by expressing a modified form of the bacterial glgC gene under the control of a Class I patatin promoter. AGPase catalyses the rate-limiting step in starch biosynthesis, and therefore the expression of a more active bacterial form of the enzyme was expected to lead to increased starch production. To facilitate maximal AGPase activity, we modified the Escherichia coli glgC gene (encoding AGPase) by site-directed mutagenesis (G336D) to reduce allosteric feedback regulation by fructose-1,6-bisphosphate. Transgenic plants (three) expressing the glgC gene had up to 70% higher AGPase activity than control plants when assayed under conditions optimal for plant and not bacterial AGPase activity. Plants having the highest AGPase activities had up to a 2.6-fold increase in total tuberous root biomass when grown under glasshouse conditions. In addition, plants with the highest tuberous root AGPase activity had significant increases in above-ground biomass, consistent with a possible reduction in feedback inhibition on photosynthetic carbon fixation. These results demonstrate that targeted modification of enzymes regulating source-sink relationships in crop plants having high carbohydrate source strengths is an effective strategy for increasing carbohydrate yields in sink tissues.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources