Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Dec 28;49(26):7721-30.
doi: 10.1021/jm060836y.

Small-molecule targeting of heat shock protein 90 chaperone function: rational identification of a new anticancer lead

Affiliations

Small-molecule targeting of heat shock protein 90 chaperone function: rational identification of a new anticancer lead

Massimiliano Meli et al. J Med Chem. .

Abstract

Heat shock protein 90 (Hsp90) is a significant target in the development of rational cancer therapy due to its role at the crossroads of multiple signaling pathways associated with cell proliferation and cell viability. Here we present a combined structure- and dynamics-based computational design strategy, taking the flexibility of the receptor and of a lead peptidic antagonist into account explicitly, to identify the nonpeptidic small molecule 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) as a structurally novel inhibitor of Hsp90. The compound is selected to bind the Hsp90 N-terminal domain, mimicking the chemical and conformational properties of the recently described peptidic antagonist of the survivin-Hsp90 complex, shepherdin [Plescia et al. Cancer Cell 2005, 7, 457-468]. Experimental tests show that AICAR binds the Hsp90 N-domain, destabilizes multiple Hsp90 client proteins in vivo, including survivin, and exhibits antiproliferative and proapoptotic activity in multiple tumor cell lines, while not affecting proliferation of normal human fibroblasts. We propose that AICAR represents a viable lead for further development of anticancer drugs with wide therapeutic opportunities.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources