Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jan;137(1):77-83.
doi: 10.1093/jn/137.1.77.

Dietary oxidized fat prevents ethanol-induced triacylglycerol accumulation and increases expression of PPARalpha target genes in rat liver

Affiliations
Free article

Dietary oxidized fat prevents ethanol-induced triacylglycerol accumulation and increases expression of PPARalpha target genes in rat liver

Robert Ringseis et al. J Nutr. 2007 Jan.
Free article

Abstract

Alcoholic fatty liver results from an impaired fatty acid catabolism due to blockade of PPARalpha and increased lipogenesis due to activation of sterol regulatory element-binding protein (SREBP)-1c. Because both oxidized fats (OF) and conjugated linoleic acids (CLA) have been demonstrated in rats to activate hepatic PPARalpha, we tested the hypothesis that these fats are able to prevent ethanol-induced triacylglycerol accumulation in the liver by upregulation of PPARalpha-responsive genes. Forty-eight male rats were assigned to 6 groups and fed isocaloric liquid diets containing either sunflower oil (SFO) as a control fat, OF prepared by heating of SFO, or CLA, in the presence and absence of ethanol, for 4 wk. Administration of ethanol lowered mRNA concentrations of PPARalpha and the PPARalpha-responsive genes medium chain acyl-CoA dehydrogenase, long chain acyl-CoA dehydrogenase, acyl-CoA oxidase, carnitine palmitoyl-CoA transferase I, and cytochrome P450 4A1 and increased triacylglycerol concentrations in the liver (P < 0.05). OF increased hepatic mRNA concentrations of PPARalpha-responsive genes and lowered hepatic triacylglycerol concentrations compared with SFO (P < 0.05) whereas CLA did not. Rats fed OF with ethanol had similar mRNA concentrations of PPARalpha-responsive genes and similar triacylglycerol concentrations in the liver as rats fed SFO or CLA without ethanol. In contrast, hepatic mRNA concentrations of SREBP-1c and fatty acid synthase were not altered by OF or CLA compared with SFO. This study shows that OF prevents an alcohol-induced triacylglycerol accumulation in rats possibly by upregulation of hepatic PPARalpha-responsive genes involved in oxidation of fatty acids, whereas CLA does not exert such an effect.

PubMed Disclaimer

Similar articles

Cited by