Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jan;37(1):157-66.
doi: 10.1002/eji.200636428.

Anti-OX40 stimulation in vivo enhances CD8+ memory T cell survival and significantly increases recall responses

Affiliations
Free article

Anti-OX40 stimulation in vivo enhances CD8+ memory T cell survival and significantly increases recall responses

Carl E Ruby et al. Eur J Immunol. 2007 Jan.
Free article

Abstract

There is growing evidence that engagement of OX40 (CD134), a member of the TNF receptor superfamily, can directly stimulate antigen-specific CD8+ T cells. It has been shown that CD8+ T cells express OX40 following activation, but the response of antigen-specific CD8+ T cells to OX40 stimulation has not been fully characterized. We utilized an antigen-specific transgenic CD8+ T cell model (OT-I) to determine if OX40 engagement can boost the generation of antigen-specific CD8+ T cell memory. Our results demonstrate that enhanced OX40 costimulation, via an agonist anti-OX40 antibody, increases CD25 and phospho-Akt expression on the antigen-specific CD8+ T cells and significantly increases the generation of long-lived antigen-specific CD8+ memory T cells. The increased numbers of memory CD8+ T cells generated via anti-OX40 treatment still required the presence of CD4+ T cells for their long-term maintenance in vivo. In addition, anti-OX40 costimulation greatly enhanced antigen-specific CD8+ T cell recall responses. These data show that OX40 engagement in vivo increases the number of antigen-specific CD8+ memory T cells surviving after antigen challenge and has implications for the development of more potent vaccines against pathogens and cancer.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources