Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Mar;9(3):293-9.
doi: 10.1089/ars.2006.1467.

A high glycolytic flux supports the proliferative potential of murine embryonic stem cells

Affiliations

A high glycolytic flux supports the proliferative potential of murine embryonic stem cells

Hiroshi Kondoh et al. Antioxid Redox Signal. 2007 Mar.

Abstract

Embryonic stem (ES) cells are immortal and present the ability to self-renew while retaining their ability to differentiate. In contrast, most primary cells possess a limited proliferative potential, and when this is exhausted, undergo an irreversible growth arrest termed senescence. In primary cells, senescence can be also triggered by a variety of stress to which ES cells are highly refractory. Here the authors report that the proliferative capacity of murine ES cells closely correlates with high activity of different glycolytic enzymes, elevated glycolytic flux, and low mitochondrial oxygen consumption. The direct relation between glycolytic flux and the ability of ES cells to proliferate is further remarked in experiments where glycolysis or ES cell self-renewal was specifically inhibited. It was previously reported that the upregulation of glycolysis in primary cells results in life span extension. The authors hypothesize that the naturally high glycolytic flux observed in murine ES cells can be responsible for their unlimited proliferative potential.

PubMed Disclaimer

Publication types

LinkOut - more resources