Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Dec;23(12):1828-46.
doi: 10.1089/neu.2006.23.1828.

Penetrating ballistic-like brain injury in the rat: differential time courses of hemorrhage, cell death, inflammation, and remote degeneration

Affiliations

Penetrating ballistic-like brain injury in the rat: differential time courses of hemorrhage, cell death, inflammation, and remote degeneration

Anthony J Williams et al. J Neurotrauma. 2006 Dec.

Abstract

Acute and delayed cerebral injury was assessed in a recently developed rat model of a penetrating ballistic-like brain injury (PBBI). A unilateral right frontal PBBI trajectory was used to induce survivable injuries to the frontal cortex and striatum. Three distinct phases of injury progression were observed. Phase I (primary injury, 0-6 h) began with immediate (<5 min) intracerebral hemorrhage (ICH) that reached maximal volumetric size at 6 h (27.0 +/- 2.9 mm(3)). During Phase II (secondary injury, 6-72 h), a core lesion of degenerate neurons surrounding the injury track expanded into peri-lesional areas to reach a maximal volume of 69.9 +/- 6.1 mm(3) at 24 h. The core lesion consisted of predominately necrotic cell death and included marked infiltration of both neutrophils (24 h) and macrophages (72 h). Phase III (delayed degeneration, 3-7 days) involved the degeneration of neurons and fiber tracts remote from the core lesion including the thalamus, internal capsule, external capsule, and cerebral peduncle. Overall, different time courses of hemorrhage, lesion evolution, and inflammation were consistent with complementary roles in injury development and repair, providing key information about these mediators of primary, secondary, and delayed brain injury development. The similarities/differences of PBBI to other focal brain injury models are discussed.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources