Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jan;153(Pt 1):51-8.
doi: 10.1099/mic.0.2006/001610-0.

Autophagy in the pathogen Candida albicans

Affiliations
Free article

Autophagy in the pathogen Candida albicans

Glen E Palmer et al. Microbiology (Reading). 2007 Jan.
Free article

Abstract

Autophagy is a major cellular process that facilitates the bulk degradation of eukaryotic macromolecules and organelles, through degradation within the lysosomal/vacuole compartment. This has been demonstrated to influence a diverse array of eukaryotic cell functions including adaptation, differentiation and developmental programmes. For example, in Saccharomyces cerevisiae autophagy is required for sporulation and survival of nitrogen starvation. The opportunistic pathogen Candida albicans has the ability to colonize and cause disease within a diverse range of mammalian host sites. The ability to adapt and differentiate within the host is liable to be critical for host colonization and infection. Previous results indicated that the vacuole plays an important role in C. albicans adaptation to stress, differentiation, and survival within and injury of host cells. In this study the importance of vacuole-mediated degradation through the process of autophagy was investigated. This involved identification and deletion of ATG9, a C. albicans gene required for autophagy. The deletion strain was blocked in autophagy and the closely related cytoplasm to vacuole (cvt) trafficking pathway. This resulted in sensitivity to nitrogen starvation, but no defects in growth rate, vacuole morphology or resistance to other stresses. This indicates that the mutant has specific defects in autophagy/cvt trafficking. Given the importance of autophagy in the development and differentiation of other eukaryotes, it was surprising to find that the atg9Delta mutant was unaffected in either yeast-hypha or chlamydospore differentiation. Furthermore, the atg9Delta mutant survived within and killed a mouse macrophage-like cell line as efficiently as control strains. The data suggest that autophagy plays little or no role in C. albicans differentiation or during interaction with host cells.

PubMed Disclaimer

Publication types

LinkOut - more resources