Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Nov;153(6):412-24.
doi: 10.1049/ip-syb:20050055.

Systems theory of Smad signalling

Affiliations

Systems theory of Smad signalling

D C Clarke et al. Syst Biol (Stevenage). 2006 Nov.

Abstract

Transforming growth factor-beta (TGFbeta) signalling is an important regulator of cellular growth and differentiation. The principal intracellular mediators of TGFbeta signalling are the Smad proteins, which upon TGFbeta stimulation accumulate in the nucleus and regulate the transcription of target genes. To investigate the mechanisms of Smad nuclear accumulation, we developed a simple mathematical model of canonical Smad signalling. The model was built using both published data and our experimentally determined cellular Smad concentrations (isoforms 2, 3 and 4). We found in mink lung epithelial cells that Smad2 (8.5-12 x 10(4) molecules cell(-1)) was present in similar amounts to Smad4 (9.3-12 x 10(4) molecules cell(-1)), whereas both were in excess of Smad3 (1.1-2.0 x 10(4) molecules cell(-1)). Variation of the model parameters and statistical analysis showed that Smad nuclear accumulation is most sensitive to parameters affecting the rates of R-Smad phosphorylation and dephosphorylation and Smad complex formation/ dissociation in the nucleus. Deleting Smad4 from the model revealed that rate-limiting phospho-R-Smad dephosphorylation could be an important mechanism for Smad nuclear accumulation. Furthermore, we observed that binding factors constitutively localised to the nucleus do not efficiently mediate Smad nuclear accumulation, if dephosphorylation is rapid. We therefore conclude that an imbalance in the rates of R-Smad phosphorylation and dephosphorylation is likely an important mechanism of Smad nuclear accumulation during TGFbeta signalling.

PubMed Disclaimer

Publication types

Substances