The twisted ion-permeation pathway of a resting voltage-sensing domain
- PMID: 17187057
- DOI: 10.1038/nature05396
The twisted ion-permeation pathway of a resting voltage-sensing domain
Abstract
Proteins containing voltage-sensing domains (VSDs) translate changes in membrane potential into changes in ion permeability or enzymatic activity. In channels, voltage change triggers a switch in conformation of the VSD, which drives gating in a separate pore domain, or, in channels lacking a pore domain, directly gates an ion pathway within the VSD. Neither mechanism is well understood. In the Shaker potassium channel, mutation of the first arginine residue of the S4 helix to a smaller uncharged residue makes the VSD permeable to ions ('omega current') in the resting conformation ('S4 down'). Here we perform a structure-guided perturbation analysis of the omega conductance to map its VSD permeation pathway. We find that there are four omega pores per channel, which is consistent with one conduction path per VSD. Permeating ions from the extracellular medium enter the VSD at its peripheral junction with the pore domain, and then plunge into the core of the VSD in a curved conduction pathway. Our results provide a model of the resting conformation of the VSD.
Similar articles
-
Voltage-sensing arginines in a potassium channel permeate and occlude cation-selective pores.Neuron. 2005 Feb 3;45(3):379-88. doi: 10.1016/j.neuron.2004.12.047. Neuron. 2005. PMID: 15694325
-
Structure prediction for the down state of a potassium channel voltage sensor.Nature. 2007 Feb 1;445(7127):550-3. doi: 10.1038/nature05494. Epub 2006 Dec 24. Nature. 2007. PMID: 17187053
-
Role of hydrophobic and ionic forces in the movement of S4 of the Shaker potassium channel.Mol Membr Biol. 2012 Dec;29(8):321-32. doi: 10.3109/09687688.2012.710343. Epub 2012 Aug 13. Mol Membr Biol. 2012. PMID: 22881396
-
Use of voltage clamp fluorimetry in understanding potassium channel gating: a review of Shaker fluorescence data.Can J Physiol Pharmacol. 2009 Jun;87(6):411-8. doi: 10.1139/y09-024. Can J Physiol Pharmacol. 2009. PMID: 19526034 Review.
-
A common pathway for charge transport through voltage-sensing domains.Neuron. 2008 Feb 7;57(3):345-51. doi: 10.1016/j.neuron.2008.01.015. Neuron. 2008. PMID: 18255028 Review.
Cited by
-
Molecular dynamics simulations of voltage-gated cation channels: insights on voltage-sensor domain function and modulation.Front Pharmacol. 2012 May 25;3:97. doi: 10.3389/fphar.2012.00097. eCollection 2012. Front Pharmacol. 2012. PMID: 22654756 Free PMC article.
-
Channelopathies of skeletal muscle excitability.Compr Physiol. 2015 Apr;5(2):761-90. doi: 10.1002/cphy.c140062. Compr Physiol. 2015. PMID: 25880512 Free PMC article. Review.
-
Tracking the movement of discrete gating charges in a voltage-gated potassium channel.Elife. 2021 Nov 15;10:e58148. doi: 10.7554/eLife.58148. Elife. 2021. PMID: 34779404 Free PMC article.
-
K(+) channels of squid giant axons open by an osmotic stress in hypertonic solutions containing nonelectrolytes.J Membr Biol. 2011 Aug;242(3):119-35. doi: 10.1007/s00232-011-9383-5. Epub 2011 Jul 21. J Membr Biol. 2011. PMID: 21773888
-
Ion currents through the voltage sensor domain of distinct families of proteins.J Biol Phys. 2023 Dec;49(4):393-413. doi: 10.1007/s10867-023-09645-z. Epub 2023 Oct 18. J Biol Phys. 2023. PMID: 37851173 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical