Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation
- PMID: 17187058
- DOI: 10.1038/nbt1270
Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation
Abstract
We report a method for large-scale absolute protein expression measurements (APEX) and apply it to estimate the relative contributions of transcriptional- and translational-level gene regulation in the yeast and Escherichia coli proteomes. APEX relies upon correcting each protein's mass spectrometry sampling depth (observed peptide count) by learned probabilities for identifying the peptides. APEX abundances agree with measurements from controls, western blotting, flow cytometry and two-dimensional gels, as well as known correlations with mRNA abundances and codon bias, providing absolute protein concentrations across approximately three to four orders of magnitude. Using APEX, we demonstrate that 73% of the variance in yeast protein abundance (47% in E. coli) is explained by mRNA abundance, with the number of proteins per mRNA log-normally distributed about approximately 5,600 ( approximately 540 in E. coli) protein molecules/mRNA. Therefore, levels of both eukaryotic and prokaryotic proteins are set per mRNA molecule and independently of overall protein concentration, with >70% of yeast gene expression regulation occurring through mRNA-directed mechanisms.
Comment in
-
Peptides you can count on.Nat Biotechnol. 2007 Jan;25(1):61-2. doi: 10.1038/nbt0107-61. Nat Biotechnol. 2007. PMID: 17211399 No abstract available.
Similar articles
-
Computational prediction of proteotypic peptides for quantitative proteomics.Nat Biotechnol. 2007 Jan;25(1):125-31. doi: 10.1038/nbt1275. Epub 2006 Dec 31. Nat Biotechnol. 2007. PMID: 17195840
-
Peptides you can count on.Nat Biotechnol. 2007 Jan;25(1):61-2. doi: 10.1038/nbt0107-61. Nat Biotechnol. 2007. PMID: 17211399 No abstract available.
-
Transcriptional response of Escherichia coli to temperature shift.Biotechnol Prog. 2005 May-Jun;21(3):689-99. doi: 10.1021/bp049630l. Biotechnol Prog. 2005. PMID: 15932244
-
Proteolytic 18O-labeling strategies for quantitative proteomics.Mass Spectrom Rev. 2007 Jan-Feb;26(1):121-36. doi: 10.1002/mas.20116. Mass Spectrom Rev. 2007. PMID: 17086517 Review.
-
Optimizing scaleup yield for protein production: Computationally Optimized DNA Assembly (CODA) and Translation Engineering.Biotechnol Annu Rev. 2007;13:27-42. doi: 10.1016/S1387-2656(07)13002-7. Biotechnol Annu Rev. 2007. PMID: 17875472 Review.
Cited by
-
Janus-like opposing roles of CD47 in autoimmune brain inflammation in humans and mice.J Exp Med. 2012 Jul 2;209(7):1325-34. doi: 10.1084/jem.20101974. Epub 2012 Jun 25. J Exp Med. 2012. PMID: 22734047 Free PMC article.
-
Gene expression signatures of energetic acclimatisation in the reef building coral Acropora millepora.PLoS One. 2013 May 9;8(5):e61736. doi: 10.1371/journal.pone.0061736. Print 2013. PLoS One. 2013. PMID: 23671571 Free PMC article.
-
Tools for label-free peptide quantification.Mol Cell Proteomics. 2013 Mar;12(3):549-56. doi: 10.1074/mcp.R112.025163. Epub 2012 Dec 17. Mol Cell Proteomics. 2013. PMID: 23250051 Free PMC article. Review.
-
Undiscovered Physiology of Transcript and Protein Networks.Compr Physiol. 2016 Sep 15;6(4):1851-1872. doi: 10.1002/cphy.c160003. Compr Physiol. 2016. PMID: 27783861 Free PMC article. Review.
-
Integration of absolute multi-omics reveals dynamic protein-to-RNA ratios and metabolic interplay within mixed-domain microbiomes.Nat Commun. 2020 Sep 18;11(1):4708. doi: 10.1038/s41467-020-18543-0. Nat Commun. 2020. PMID: 32948758 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous