Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jan;33(1):95-104.
doi: 10.1016/j.ultrasmedbio.2006.07.018.

Noninvasive, transcranial and localized opening of the blood-brain barrier using focused ultrasound in mice

Affiliations

Noninvasive, transcranial and localized opening of the blood-brain barrier using focused ultrasound in mice

James J Choi et al. Ultrasound Med Biol. 2007 Jan.

Abstract

The feasibility of blood-brain barrier (BBB) opening in the hippocampus of wild-type mice using focused ultrasound (FUS) through the intact skull and skin was investigated. Needle hydrophone measurements through ex vivo skulls revealed minimal attenuation ( approximately 18% of the pressure amplitude), a well-focused beam pattern and minute focus displacement through the parietal bone. In experiments in vivo, the brains of three mice were sonicated transcranially. Pulsed ultrasound sonications at 1.5 MHz and acoustic pressures ranging from 0.8 to 2.7 MPa were used at 20% duty cycle. Before sonication, a bolus of 10 microL of an ultrasound contrast agents (Optison) was injected intravenously. Contrast-enhanced high-resolution magnetic resonance imaging (9.4 T) revealed BBB opening and allowed for the monitoring of the slow permeation of gadolinium in the hippocampus. The region of the brain where BBB opening occurred increased with the pressure amplitude. These findings thus demonstrated the feasibility of locally opening the BBB in mice using FUS through intact skull and skin and serve as the first step in determining and assessing feasibility of drug delivery to specific regions in the mouse brain using FUS.

PubMed Disclaimer

Publication types

LinkOut - more resources