Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Feb;41(2):168-76.
doi: 10.1016/j.ymeth.2006.07.025.

Measuring the rate of gross chromosomal rearrangements in Saccharomyces cerevisiae: A practical approach to study genomic rearrangements observed in cancer

Affiliations
Review

Measuring the rate of gross chromosomal rearrangements in Saccharomyces cerevisiae: A practical approach to study genomic rearrangements observed in cancer

Akira Motegi et al. Methods. 2007 Feb.

Abstract

Gross chromosomal rearrangements (GCRs), including translocations, deletions, amplifications and aneuploidy are frequently observed in various types of human cancers. Despite their clear importance in carcinogenesis, the molecular mechanisms by which GCRs are generated and held in check are poorly understood. By using a GCR assay, which can measure the rate of accumulation of spontaneous GCRs in Saccharomyces cerevisiae, we have found that many proteins involved in DNA replication, DNA repair, DNA recombination, checkpoints, chromosome remodeling, and telomere maintenance, play crucial roles in GCR metabolism. We describe here the theoretical background and practical procedures of this GCR assay. We will explain the breakpoint structure and DNA damage that lead to GCR formation. We will also summarize the pathways that suppress and enhance GCR formation. Finally, we will briefly describe similar assays developed by others and discuss their potential in studying GCR metabolism.

PubMed Disclaimer

Publication types

LinkOut - more resources