Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Dec;3(12):1325-48.
doi: 10.1002/cbdv.200690136.

Enzymatic degradation of beta- and mixed alpha,beta-oligopeptides

Affiliations

Enzymatic degradation of beta- and mixed alpha,beta-oligopeptides

Tobias Heck et al. Chem Biodivers. 2006 Dec.

Abstract

One of the main and most astonishing characteristics of peptides comprised of beta-amino acids with proteinogenic side chains is their extraordinarily high stability towards enzymatic degradation. So far, only certain microbial enzymes have been shown to cleave N-terminal beta(3)-homoamino acid residues from peptides. In this work, the L-aminopeptidase-D-amidase/esterase (DmpA) from Ochrobactrum anthropi LMG7991 is compared to two closely related beta-peptidyl aminopeptidases (BapA), which originate from Sphingosinicella strains, and to microsomal leucine aminopeptidase (LAP) as a reference. All four enzymes are aminopeptidases cleaving N-terminal amino acids from small peptides. Degradation experiments reveal that DmpA and both BapA enzymes exhibit unique, but clearly distinct substrate specificities and preferences. DmpA also cleaves beta- and mixed alpha,beta-peptides and amides, but a short side chain of the N-terminal beta-amino acid residue seems to be a prerequisite, since only peptides carrying N-terminal betahGly and beta(3)hAla are hydrolyzed with good efficiencies. Both beta-peptidyl aminopeptidases cleave beta-amino acids from a variety of beta-peptides and mixed alpha,beta-peptides, but they do not accept alpha-amino acids in the N-terminal position. Astonishingly, DmpA exhibited much higher catalytical rates for the mixed dipeptide carnosine (H-betahGly-His-OH) than for any other substrate described until now.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources