Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jan;2(1):99-102.
doi: 10.1002/smll.200500252.

Design of self-assembling peptide nanotubes with delocalized electronic states

Affiliations

Design of self-assembling peptide nanotubes with delocalized electronic states

Nurit Ashkenasy et al. Small. 2006 Jan.

Abstract

Redox-promoted self-assembly of an eight-residue cyclic D,L-α-peptide bearing four 1,4,5,8-naphthalenetetracarboxylic diimide (NDI) side chains results in the formation of electronically delocalized peptide nanotubes hundreds of nm in length. The supramolecular approach described provides a rational basis for the design and fabrication of 1-D materials with potential utility in optical and electronic devices.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Chemical structures of the NDI-modified peptides used in this study. For details regarding the synthesis of 1 and 2, see Supporting Information.
Figure 2
Figure 2
(a) Calculated model of cyclic D,L-α-peptide 1 in a self-assembled tubular configuration illustrating the role of intermolecular β-sheet-like backbone hydrogen bonding in juxtaposing and stacking of aromatic NDI side chains (most side chains are omitted for clarity). (b) Reversible reduction of the NDI side chains in 1 and 2 to the corresponding NDI anion radicals. (c) Schematic illustration of redox-promoted peptide nanotube self-assembly.
Figure 3
Figure 3
(a) UV-VIS spectra of peptides 1 and 2 in the reduced state and peptide 1 in its native state. (b) Near-infrared spectra of 1 and 2 in their reduced states. Each peptide sample is 1.5 mM in NDI groups, and reduction is accomplished by exposure to 3.3 mM Na2S2O4 in D2O under inert atmosphere. Spectra in (b) were background corrected against the same sample reoxidized by exposure to air in order to minimize background absorption and distortions in the NIR resulting from small differences arising from residual H2O in peptide and dithionite stock solutions. The noise around 2200 nm is an instrument artifact.
Figure 4
Figure 4
(a) Atomic force microscopy (AFM) image of reduced cyclic peptide 1 adsorbed on mica with (b) a suggested model for the organization of the self-assembled cyclic peptide within the fibrous material. (c) The lateral cross-section is consistent with the calculated diameter of the self-assembled peptide nanotube as shown in (d).

References

    1. Kimizuka N, Kawasaki T, Hirata K, Kunitake T. J Am Chem Soc. 1995;117:6360–6361. a)
    2. Samori P, Francke V, Mullen K, Rabe JP. Chem-Eur J. 1999;5:2312–2317. b)
    3. Ruben M, Breuning E, Gisselbrecht JP, Lehn JM. Angew Chem Int Ed. 2000;39:4139–4142. c) Angew. Chem. 2000, 112, 4312–4315. - PubMed
    4. Hulvat JF, Stupp SI. Angew Chem Int Ed. 2003;42:778–781. d) Angew. Chem. 2003, 115, 802–805. - PubMed
    5. Zhang SG. Nat Biothechnol. 2003;21:1171–1178. e)
    6. Bushey ML, Nguyen TQ, Zhang W, Horoszewski D, Nuckolls C. Angew Chem Int Ed. 2004;43:5446–5453. f) Angew. Chem. 2004, 116, 5562–5570. - PubMed
    7. Crispin X, Cornil J, Friedlein R, Okudaira KK, Lemaur V, Crispin A, Kestemont G, Lehmann M, Fahlman M, Lazzaroni R, Geerts Y, Wendin G, Ueno N, Bredas JL, Salaneck WR. J Am Chem Soc. 2004;126:11889–11899. g) - PubMed
    8. Li XY, Sinks LE, Rybtchinski B, Wasielewski MR. J Am Chem Soc. 2004;126:10810–10811. h) - PubMed
    9. Wurthner F, Chen ZJ, Hoeben FJM, Osswald P, You CC, Jonkheijm P, von Herrikhuyzen J, Schenning APHJ, van der Schoot PPAM, Meijer EW, Beckers EHA, Meskers SCJ, Janssen RAJ. J Am Chem Soc. 2004;126:10611–10618. i) - PubMed
    10. Flood AH, Ramirez RJA, Deng WQ, Muller RP, Goddard WA, Stoddart JF. Aust J Chem. 2004;57:301–322. j)
    11. Jang SS, Jang YH, Kim YH, Goddard WA, Flood AH, Laursen BW, Tseng HR, Stoddart JF, Jeppesen JO, Choi JW, Steuerman DW, Delonno E, Heath JR. J Am Chem Soc. 2005;127:1563–1575. k) - PubMed
    1. Lokey RS, Iverson BL. Nature. 1995;375:303–305. a)
    2. Schmidt-Mende L, Fechtenkotter A, Mullen K, Moons E, Friend RH, MacKenzie JD. Science. 2001;293:1119–1122. b) - PubMed
    3. Percec V, Glodde M, Bera TK, Miura Y, Shiyanovskaya I, Singer KD, Balagurusamy VSK, Heiney PA, Schnell I, Rapp A, Spiess HW, Hudson SD, Duan H. Nature. 2002;419:384–387. c) - PubMed
    4. Hill JP, Jin W, Kosaka A, Fukushima T, Ichihara H, Shimomura T, Ito K, Hashizume T, Ishii N, Aida T. Science. 2004;304:1481–1483. d) - PubMed
    5. Messmore BW, Hulvat JF, Sone ED, Stupp SI. J Am Chem Soc. 2004;126:14452–14458. d) - PubMed
    6. Small D, Zaitsev V, Jung YS, Rosokha SV, Head-Gordon M, Kochi JK. J Am Chem Soc. 2004;126:13850–13858. e) - PubMed
    7. Hoeben FJM, Jonkheijm P, Meijer EW, Schenning APHJ. Chem Rev. 2005;105:1491–1546. f) - PubMed
    8. Thalacker C, Miura A, De Feyter S, De Schryver FC, Wurthner F. Org Biomol Chem. 2005;3:414–422. g) - PubMed
    9. Talukdar P, Bollot G, Mareda J, Sakai N, Matile S. J Am Chem Soc. 2005;127:6528–6529. h) - PubMed
    1. Ghadiri MR, Granja JR, Milligan RA, McRee DE, Khazanovich N. Nature. 1993;366:324–327. a) - PubMed
    2. Hartgerink JD, Granja JR, Milligan RA, Ghadiri MR. J Am Chem Soc. 1996;118:43–50. b)
    3. Bong DT, Clark TD, Granja JR, Ghadiri MR. Angew Chem. 2001;113:1016–1041. c) Angew. Chem. Int. Ed. Engl. 2001, 40, 988–1011. - PubMed
    1. Miller LL, Duan RG, Tully DC, Tomalia DA. J Am Chem Soc. 1997;119:1005–1010.
    1. Katz HE, Johnson J, Lovinger AJ, Li W. J Am Chem Soc. 2000;122:7787–7792. a)
    2. Katz HE, Lovinger AJ, Johnson J, Kloc C, Slegrist T, Li W, Lin YY, Dodabalapur A. Nature. 2000;404:478–481. b) - PubMed

Publication types

LinkOut - more resources