Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jul-Aug;1(4):153-64.
doi: 10.1002/cmmi.103.

Tumor imaging in small animals with a combined micro-CT/micro-DSA system using iodinated conventional and blood pool contrast agents

Affiliations
Free article

Tumor imaging in small animals with a combined micro-CT/micro-DSA system using iodinated conventional and blood pool contrast agents

Cristian T Badea et al. Contrast Media Mol Imaging. 2006 Jul-Aug.
Free article

Abstract

X-ray based micro-computed tomography (CT) and micro-digital subtraction angiography (DSA) are important non-invasive imaging modalities for following tumorogenesis in small animals. To exploit these imaging capabilities further, the two modalities were combined into a single system to provide both morphological and functional data from the same tumor in a single imaging session. The system is described and examples are given of imaging implanted fibrosarcoma tumors in rats using two types of contrast media: (a) a new generation of blood pool contrast agent containing iodine with a concentration of 130 mg/mL (Fenestratrade mark VC, Alerion Biomedical, San Diego, CA, USA) for micro-CT and (b) a conventional iodinated contrast agent (Isovue(R)-370 mg/mL iodine, trademark of Bracco Diagnostics, Princeton, NJ, USA) for micro-DSA. With the blood pool contrast agent, the 3D vascular architecture is revealed in exquisite detail at 100 microm resolution. Micro-DSA images, in perfect registration with the 3D micro-CT datasets, provide complementary functional information such as mean transit times and relative blood flow through the tumor. This imaging approach could be used to understand tumor angiogenesis better and be the basis for evaluating anti-angiogenic therapies.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms