Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jan;56(1):188-98.
doi: 10.1002/art.22298.

Mechanisms of cartilage growth: modulation of balance between proteoglycan and collagen in vitro using chondroitinase ABC

Affiliations

Mechanisms of cartilage growth: modulation of balance between proteoglycan and collagen in vitro using chondroitinase ABC

Anna Asanbaeva et al. Arthritis Rheum. 2007 Jan.

Abstract

Objective: To examine the cartilage growth-associated effects of a disruption in the balance between the swelling pressure of glycosaminoglycans (GAGs) and the restraining function of the collagen network, by diminishing GAG content prior to culture using enzymatic treatment with chondroitinase ABC.

Methods: Immature bovine articular cartilage explants from the superficial and middle layers were analyzed immediately or after incubation in serum-supplemented medium for 13 days. Other explants were treated with chondroitinase ABC to deplete tissue GAG and also either analyzed immediately or after incubation in serum-supplemented medium for 13 days. Treatment- and incubation-associated variations in tissue volume, contents of proteoglycan and collagen network components, and tensile mechanical properties were assessed.

Results: Incubation in serum-supplemented medium resulted in expansive growth with a marked increase in tissue volume that was associated with a diminution of tensile integrity. In contrast, chondroitinase ABC treatment on day 0 led to a marked reduction of GAG content and enhancement of tensile integrity, and subsequent incubation led to maturational growth with minimal changes in tissue volume and maintenance of tensile integrity at the enhanced levels.

Conclusion: The data demonstrate that a manipulation of GAG content in articular cartilage explants can distinctly alter the growth phenotype of cartilage. This may have practical utility for tissue engineering and cartilage repair. For example, the expansive growth phenotype may be useful to fill cartilage defects, while the maturational growth phenotype may be useful to induce matrix stabilization after filling defect spaces.

PubMed Disclaimer

Publication types

MeSH terms