Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jan 10;129(1):234-40.
doi: 10.1021/ja066325i.

Kinetics of hydrogen atom transfer from (eta(5)-C(5)H(5))Cr(CO)(3)H to various olefins: influence of olefin structure

Affiliations

Kinetics of hydrogen atom transfer from (eta(5)-C(5)H(5))Cr(CO)(3)H to various olefins: influence of olefin structure

Jongwook Choi et al. J Am Chem Soc. .

Abstract

Treating (etha(5)-C(5)H(5))Cr(CO)3H (1) or (etha(5)-C(5)H(5))Cr(CO)3D (1-d(1)) with an excess of olefin containing the opposite isotope generally leads to H/D exchange, although hydrogenation is also observed in some cases. Application of an appropriate statistical correction to the observed exchange rate gives kH and kD, the rate constants for H* (D*) transfer from (etha(5)-C(5)H(5))Cr(CO)(3)H (D) to various olefins. The values of kH and kD vary appreciably with the substituents on the double bond. Phenyl-substituted olefins accept H* more readily than do carbomethoxy-substituted olefins, although the latter accept H* more readily than do alkyl-substituted olefins. A methyl substituent on the incipient radical site increases k(H) at 323 K by a factor between 5 and 50. A methyl substituent on the carbon to which the H* is being transferred decreases kH substantially. On the whole, the rate constants for H* transfer reflect steric effects as well as the stability of the resulting carbon-centered radicals.

PubMed Disclaimer

LinkOut - more resources