Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jan;9(1):39-49.
doi: 10.1111/j.1463-1326.2005.00566.x.

Mechanism for blockade of angiotensin subtype 1 receptors to lower plasma glucose in streptozotocin-induced diabetic rats

Affiliations

Mechanism for blockade of angiotensin subtype 1 receptors to lower plasma glucose in streptozotocin-induced diabetic rats

P Chan et al. Diabetes Obes Metab. 2007 Jan.

Abstract

Aims: We investigated the mechanism(s) by which valsartan, a selective antagonist of angiotensin subtype 1 (AT(1)) receptor, decreased plasma glucose in streptozotocin (STZ)-induced diabetic rats.

Methods: The plasma glucose concentration was assessed by the glucose oxidase method. The concentration of beta-endorphin in plasma or medium incubating adrenal medulla was measured using an enzyme-linked immunosorbent assay. The mRNA levels of the subtype 4 form of glucose transporter (GLUT4) in soleus muscle and phosphoenolpyruvate carboxykinase (PEPCK) in the liver were detected by Northern blotting analysis, while the protein levels of GLUT4 in isolated soleus muscle and hepatic PEPCK were investigated using Western blotting analysis.

Results: A single intravenous injection of valsartan dose-dependently increased plasma beta-endorphin-like immunoreactivity (BER) in parallel with the lowering of plasma glucose concentration in STZ-induced diabetic rats. Naloxone and naloxonazine inhibited the plasma glucose-lowering action of valsartan at doses sufficient to block opioid micro-receptors. In contrast to its action in wild-type diabetic mice, valsartan failed to modify plasma glucose in opioid micro-receptor knockout diabetic mice. Bilateral adrenalectomy in STZ-induced diabetic rats eliminated both the plasma glucose-lowering action and the plasma BER-elevating action of valsartan. In the isolated adrenal medulla of STZ-induced diabetic rats, angiotensin II (Ang II) or valsartan did not affect spontaneous BER secretion. Activation of cholinergic receptors by 1.0 micromol/l acetylcholine (ACh) enhanced BER secretion from the isolated adrenal medulla of STZ-induced diabetic rats, but not in the presence of 1.0 nmol/l Ang II, while valsartan reversed this inhibition by Ang II in a concentration-dependent manner. Treatment of STZ-induced diabetic rats with valsartan (0.2 mg/kg) three times daily for 3 days resulted in an increase in gene expression of GLUT4 in soleus muscle and impeded the reduction of elevated mRNA or protein level of hepatic PEPCK. Both of these effects were blocked by opioid micro-receptor antagonist.

Conclusions: The results suggest that blockade of AT(1) receptor by valsartan may enhance the adrenal beta-endorphin secretion induced by ACh, activating the opioid micro-receptors to increase glucose utilization and/or to decrease hepatic gluconeogenesis, resulting in the reduction of plasma glucose in STZ-induced diabetic rats.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms