Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Mar;49(3):590-6.
doi: 10.1161/01.HYP.0000255173.50317.fc. Epub 2007 Jan 2.

Arachidonic acid metabolites as endothelium-derived hyperpolarizing factors

Affiliations
Review

Arachidonic acid metabolites as endothelium-derived hyperpolarizing factors

William B Campbell et al. Hypertension. 2007 Mar.

Abstract

The endothelium regulates vascular tone through the release of a number of soluble mediators, including NO, prostaglandin I2, and endothelium-derived hyperpolarizing factor. Epoxyeicosatrienoic acids are cytochrome P450 epoxygenase metabolites of arachidonic acid. They are synthesized by the vascular endothelium and open calcium-activated potassium channels, hyperpolarize the membrane, and relax vascular smooth muscle. Endothelium-dependent relaxations to acetylcholine, bradykinin, and shear stress that are not inhibited by cyclooxygenase and NO synthase inhibitors are mediated by the endothelium-derived hyperpolarizing factor. In arteries from experimental animals and humans, the non-NO, non-prostaglandin-mediated relaxations and endothelium-dependent hyperpolarizations are blocked by cytochrome P450 inhibitors, calcium-activated potassium channel blockers, and epoxyeicosatrienoic acid antagonists. Acetylcholine and bradykinin stimulate epoxyeicosatrienoic acid release from endothelial cells and arteries. These findings indicate that epoxyeicosatrienoic acids act as endothelium-derived hyperpolarizing factors and regulate arterial tone.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources