Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jan 3:6:2.
doi: 10.1186/1476-4598-6-2.

Gene expression profiles of primary colorectal carcinomas, liver metastases, and carcinomatoses

Affiliations

Gene expression profiles of primary colorectal carcinomas, liver metastases, and carcinomatoses

Kristine Kleivi et al. Mol Cancer. .

Abstract

Background: Despite the fact that metastases are the leading cause of colorectal cancer deaths, little is known about the underlying molecular changes in these advanced disease stages. Few have studied the overall gene expression levels in metastases from colorectal carcinomas, and so far, none has investigated the peritoneal carcinomatoses by use of DNA microarrays. Therefore, the aim of the present study is to investigate and compare the gene expression patterns of primary carcinomas (n = 18), liver metastases (n = 4), and carcinomatoses (n = 4), relative to normal samples from the large bowel.

Results: Transcriptome profiles of colorectal cancer metastases independent of tumor site, as well as separate profiles associated with primary carcinomas, liver metastases, or peritoneal carcinomatoses, were assessed by use of Bayesian statistics. Gains of chromosome arm 5p are common in peritoneal carcinomatoses and several candidate genes (including PTGER4, SKP2, and ZNF622) mapping to this region were overexpressed in the tumors. Expression signatures stratified on TP53 mutation status were identified across all tumors regardless of stage. Furthermore, the gene expression levels for the in vivo tumors were compared with an in vitro model consisting of cell lines representing all three tumor stages established from one patient.

Conclusion: By statistical analysis of gene expression data from primary colorectal carcinomas, liver metastases, and carcinomatoses, we are able to identify genetic patterns associated with the different stages of tumorigenesis.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Dendrogram from differentially expressed genes between metastases and primary tumors. Dendrogram from hierarchical clustering of the 89 most statistical differentially expressed genes between metastases (n = 8; carcinomatoses and liver metastases together indicated in red) and primary carcinomas (n = 18 indicated in black), with a more than two-fold change derived from BAMarray.
Figure 2
Figure 2
Cluster analysis of differentially expressed genes between primary carcinomas, liver metastases and carcinomatoses. A) PCA of the 53 most statistical differentially expressed genes between of primary carcinomas (n = 18, black), liver metastases (n = 4, blue), and carcinomatoses (n = 4, pink) expressed over three-fold derived from BAMarray. B) HCA of the same genes, with the same color coding. Genes are colored based on association to tumor site.
Figure 3
Figure 3
ELAC1 downregulation in metastases. We used real-time RT-PCR to validate the expression of five genes with altered expression in metastases. ELAC1 was validated as a downregulated gene in colorectal cancer, with a particular downregulation in the liver metastases and carcinomatoses. Values are here normalized according to values from normal colon mucosa before log2-transformation. Red and blue colored circles denote results from individual samples using real time RT-PCR and microarray experiments, respectively. N, normal colon mucosa; P, primary carcinoma; L, liver metastasis; C, carcinomatosis.
Figure 4
Figure 4
Genome and transcriptome profiles of cell line model. A) Genomic changes in three cell lines IS1, IS2, and IS3 from a primary carcinoma, its corresponding liver- and peritoneal metastases derived from the same patient. B) Genes expressed in fold change above 2.0 in the same cell lines. 609 genes are found in common between the three cell lines, whereas 263 genes are shared between IS1 and IS2, 130 genes in common between IS1 and IS3, and 225 genes are shared between the metastases cell lines, IS2 and IS3. 551- (IS1), 406- (IS2), and 484 genes (IS3) are only seen in one cell line.

Similar articles

Cited by

References

    1. The Cancer Registry of Norway http://www.kreftregisteret.no Accessed 2006.
    1. Potter JD. Colorectal cancer: molecules and populations. J Natl Cancer Inst. 1999;91:916–932. doi: 10.1093/jnci/91.11.916. - DOI - PubMed
    1. Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 1995;270:467–470. doi: 10.1126/science.270.5235.467. - DOI - PubMed
    1. Zhang L, Zhou W, Velculescu VE, Kern SE, Hruban RH, Hamilton SR, Vogelstein B, Kinzler KW. Gene expression profiles in normal and cancer cells. Science. 1997;276:1268–1272. doi: 10.1126/science.276.5316.1268. - DOI - PubMed
    1. Perou CM, Sorlie T, Eisen MB, van de RM, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D. Molecular portraits of human breast tumors. Nature. 2000;406:747–752. doi: 10.1038/35021093. - DOI - PubMed