Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Jan;232(1):27-37.

A comparison of arteries and veins in oxidative stress: producers, destroyers, function, and disease

Affiliations
  • PMID: 17202583
Review

A comparison of arteries and veins in oxidative stress: producers, destroyers, function, and disease

Theodora Szasz et al. Exp Biol Med (Maywood). 2007 Jan.

Abstract

Reactive oxygen species (ROS) are by-products of oxygen metabolism, normally present in low levels inside cells, where they participate in signaling processes. The delicate balance in the continuous cycle of ROS generation and inactivation is maintained by enzymatic and nonenzymatic endogenous systems. Overwhelming production of ROS (by such sources as the mitochondrial electron transport chain, NADPH oxidase, xanthine oxidase, or uncoupled nitric oxide synthase), when inadequately counteracted by destruction through antioxidant systems (such as superoxide dismutase or catalase), leads to a prooxidant state also known as oxidative stress. Increased levels of ROS and markers of oxidative stress have been consistently found in such cardiovascular diseases as atherosclerosis or hypertension, although controversy still exists over the pathophysiological role of oxidative stress in these conditions. ROS can modulate vascular function either by direct oxidative damage or by activating cellular signaling pathways that lead to abnormal contractile, inflammatory, proliferative, or remodeling properties of the blood vessel. Most current research focuses on these processes in arteries, leaving veins, "the other side" of vascular biology, in obscurity. Veins are different structurally and functionally from arteries. Equipped with a smaller smooth muscle layer compared to arteries, but being able to accommodate 70% of the circulating blood volume, veins can modulate cardiovascular homeostasis and contribute significantly to hypertension pathogenesis. Although the reports on the quantitative differences in ROS production in veins compared to arteries had conflicting results, there is a clear qualitative difference in ROS metabolism and utilization between the two vessel types. This review will compare and contrast the current knowledge of ROS metabolism in arteries versus veins in both physiological and pathophysiological conditions. Our understanding of the mechanisms underlying vascular diseases would greatly benefit from a more thorough exploration of the role of veins and venous oxidative stress.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources