Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2007 Apr 1;55(5):497-507.
doi: 10.1002/glia.20475.

Identification and characterization of GFAPkappa, a novel glial fibrillary acidic protein isoform

Affiliations
Comparative Study

Identification and characterization of GFAPkappa, a novel glial fibrillary acidic protein isoform

Jenny Blechingberg et al. Glia. .

Abstract

Glial fibrillary acidic protein (GFAP) is the principal component of the intermediary filaments in mature astrocytes of the central nervous system (CNS). The protein consists of three domains: the head, the coiled-coil, and the tail. Here, we describe the isolation of an evolutionary conserved novel GFAP isoform, GFAPkappa, produced by alternative splicing and polyadenylation of the 3'-region of the human GFAP pre-mRNA. As a consequence, the resulting human GFAPkappa protein harbors a nonconserved C-terminal tail sequence distinct from the tails of GFAPalpha, the predominant GFAP isoform, and GFAPepsilon, an isoform which also results from alternative splicing. The head and coiled-coil rod domains are identical between the three GFAP isoforms. Interestingly, GFAPkappa is incapable of forming homomeric filaments, and increasing GFAPkappa expression levels causes a collapse of intermediate filaments formed by GFAPalpha. In searching for a biological relevance of GFAPkappa, we noticed that mRNA expression levels of GFAPalpha, GFAPepsilon, and GFAPkappa are gradually increased during development of the embryonic pig brain. However, whereas the GFAPalpha/GFAPepsilon ratio is constant, the GFAPkappa/GFAPepsilon ratio decreases during brain development. Furthermore, in glioblastoma tumors, an increased GFAPkappa/GFAPepsilon ratio is detected. Our results suggest that the relative expression level of the GFAPkappa isoform could modulate the properties of GFAP intermediate filaments and perhaps thereby influencing the motility of GFAP positive astrocytes and progenitor cells within the CNS.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms