Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jan;48(1):22-6.

Deep-inspiration breath-hold PET/CT of the thorax

Affiliations
  • PMID: 17204695
Free article

Deep-inspiration breath-hold PET/CT of the thorax

Sadek A Nehmeh et al. J Nucl Med. 2007 Jan.
Free article

Abstract

The goal of this study was to describe our initial experience with the deep-inspiration breath-hold (DIBH) technique in combined PET/CT of the thorax. This article presents particular emphasis on the technical aspects required for clinical implementation.

Methods: In the DIBH technique, the patient is verbally coached and brought to a reproducible deep inspiration breath-hold level. The first "Hold" period, which refers to the CT session, is considered as the reference. This is followed by 9- to 20-s independent breath-hold PET acquisitions. The goal is to correct for respiratory motion artifacts and, consequently, improve the tumor quantitation and localization on the PET/CT images and inflate the lungs for possible improvement in the detection of subcentimeter pulmonary nodules. A physicist monitors and records patient breathing during PET/CT acquisition using a motion tracker. Patient breathing traces obtained during acquisition are examined on the fly to assess the reproducibility of the technique.

Results: Data from 8 patients, encompassing 10 lesions, were analyzed. Visual inspection of fused PET/CT images showed improved spatial matching between the 2 modalities, reduced motion artifacts especially in the diaphragm, and increased the measured standardized uptake value (SUV) attributed to reduced motion blurring, as compared with the standard clinical PET/CT images.

Conclusion: The practice of DIBH PET/CT is feasible in a clinical setting. With this technique, consistent lung inflation levels are achieved during PET/CT sessions, as judged by both motion tracker and verification of spatial matching between PET and CT images. Breathing-induced motion artifacts are significantly reduced using DIBH compared with free breathing, enabling better target localization and quantitation. The DIBH technique showed an increase in the median SUV by 32.46%, with a range from 4% to 83%, compared with SUVs measured on the clinical images. The median percentage reduction in the PET-to-CT lesions' centroids was 26.6% (range, 3%-50%).

PubMed Disclaimer