Estimates of basilar-membrane nonlinearity effects on masking of tones and speech
- PMID: 17204895
- DOI: 10.1097/AUD.0b013e3180310212
Estimates of basilar-membrane nonlinearity effects on masking of tones and speech
Abstract
Objective: The aim of this experiment was to assess the contribution of cochlear nonlinearities to speech recognition in noise for individuals with normal hearing and a range of quiet thresholds. For signals close to the characteristic frequency (CF) of a place on the basilar membrane, the normal growth of response of the basilar membrane is linear at lower signal levels and compressed at medium to higher signal levels. In contrast, at moderate to high CFs, the basilar membrane responds more linearly to stimuli at frequencies well below the CF regardless of input level. Thus, for moderate-level speech and a lower frequency masker, the response to the masker grows linearly whereas the response to the speech is compressed, which may result in changes in the effectiveness of the masker on speech recognition with increases in masker level. To test this hypothesis, observed speech-recognition scores were compared with scores predicted using an audibility-based model, which did not include nonlinear effects that may influence masker effectiveness.
Design: Growth of simultaneous masking was measured for moderate-level bandpass-filtered nonsense syllables and for 350-msec pure tones at frequencies within the speech passband. Masker frequencies were within (on-frequency) or below (off-frequency) the speech passband. Estimates of basilar-membrane nonlinearities were derived from growth-of-masking functions for 10-msec, 2.0- and 4.0-kHz tones in narrowband, off-frequency maskers presented simultaneously. Subjects were 26 adults with normal hearing with approximately a 20-dB range of average quiet thresholds.
Results: Breakpoints (i.e., the levels corresponding to the transitions from linear to nonlinear responses) were strongly associated with quiet thresholds but slopes measured above the breakpoints were independent of quiet thresholds. Individual differences were substantially larger for off-frequency masking of pure tones and speech than for on-frequency masking of pure tones and speech. Using an audibility-based predictive model, the change in speech audibility resulting from the compressed response to speech with increasing off-frequency masker level (and the resulting decline in scores) was well predicted from nonlinear growth of masking for pure tones measured in the same off-frequency masker. However, absolute speech-recognition predictions were generally inaccurate and were a function of how well pure-tone signal levels at masked threshold estimated masker effectiveness for speech. That is, subjects with lower off-frequency masked thresholds had less accurate predictions of speech recognition in off-frequency maskers.
Conclusions: Large individual differences in off-frequency masking of pure tones and speech are consistent with the assumption that small changes in the shape of the basilar-membrane input-output function result in large changes in the amount of off-frequency masking but small (if any) changes in on-frequency masking where the signal and masker are subject to a similar compression. Growth of off-frequency masking of pure tones and speech were correlated with each other, consistent with the underlying basilar-membrane response, and consistent with changes in breakpoints for subjects with normal hearing and a range of quiet thresholds. These results provide support for a role of nonlinear effects in the understanding of speech in noise.
Similar articles
-
Speech recognition in noise: estimating effects of compressive nonlinearities in the basilar-membrane response.Ear Hear. 2007 Sep;28(5):682-93. doi: 10.1097/AUD.0b013e31812f7156. Ear Hear. 2007. PMID: 17804982
-
High-level psychophysical tuning curves: simultaneous masking by pure tones and 100-Hz-wide noise bands.J Speech Hear Res. 1991 Apr;34(2):360-73. J Speech Hear Res. 1991. PMID: 2046360
-
Auditory brainstem correlates of basilar membrane nonlinearity in humans.Audiol Neurootol. 2009;14(2):88-97. doi: 10.1159/000158537. Epub 2008 Oct 1. Audiol Neurootol. 2009. PMID: 18827479
-
Effects of masker frequency and duration in forward masking: further evidence for the influence of peripheral nonlinearity.Hear Res. 2000 Dec;150(1-2):258-66. doi: 10.1016/s0378-5955(00)00206-9. Hear Res. 2000. PMID: 11077208 Review.
-
Psychoacoustic consequences of compression in the peripheral auditory system.Psychol Rev. 1998 Jan;105(1):108-24. doi: 10.1037/0033-295x.105.1.108. Psychol Rev. 1998. PMID: 9450373 Review.
Cited by
-
Level-dependent changes in perception of speech envelope cues.J Assoc Res Otolaryngol. 2012 Dec;13(6):835-52. doi: 10.1007/s10162-012-0343-2. Epub 2012 Aug 8. J Assoc Res Otolaryngol. 2012. PMID: 22872414 Free PMC article.
-
Effects of age and hearing loss on overshoot.J Acoust Soc Am. 2016 Oct;140(4):2481. doi: 10.1121/1.4964267. J Acoust Soc Am. 2016. PMID: 27794300 Free PMC article.
-
Individual differences in behavioral estimates of cochlear nonlinearities.J Assoc Res Otolaryngol. 2012 Feb;13(1):91-108. doi: 10.1007/s10162-011-0291-2. Epub 2011 Sep 22. J Assoc Res Otolaryngol. 2012. PMID: 21938546 Free PMC article.
-
What is the role of the medial olivocochlear system in speech-in-noise processing?J Neurophysiol. 2012 Mar;107(5):1301-12. doi: 10.1152/jn.00222.2011. Epub 2011 Dec 7. J Neurophysiol. 2012. PMID: 22157117 Free PMC article.
-
Compression and amplification algorithms in hearing aids impair the selectivity of neural responses to speech.Nat Biomed Eng. 2022 Jun;6(6):717-730. doi: 10.1038/s41551-021-00707-y. Epub 2021 May 3. Nat Biomed Eng. 2022. PMID: 33941898 Free PMC article.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous