Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jan;8(1):265-72.
doi: 10.1021/bm0604754.

Development of improved nanoparticulate polyelectrolyte complex physicochemistry by nonstoichiometric mixing of polyions with similar molecular weights

Affiliations

Development of improved nanoparticulate polyelectrolyte complex physicochemistry by nonstoichiometric mixing of polyions with similar molecular weights

Sean M Hartig et al. Biomacromolecules. 2007 Jan.

Abstract

Water-based, biodegradable polyelectrolyte complex dispersions (PECs) prepared by mixing oppositely charged polyions are advantageous drug delivery systems due to constituent biocompatibility and nanoparticulate architectures. Reaction phase environmental parameters dictate PEC physicochemical properties, and specifically, complexation between polyelectrolytes having significantly different molecular weights leads to formation of water-insoluble aggregates. Starting with this fact, four-component similar and dissimilar molecular weight PEC chemistries were applied and compared with and without frequency-induced dispergation. The goal was to define nanoparticulate PEC systems with desirable characteristics for use in biological systems. Results show PEC formulations from precursors with similar low molecular weights yielded dispersions with suitable physicochemical characteristics, as verified by photon correlation spectroscopy and TEM, presumably due to efficient ion pairing. Similar low molecular weight PECs fabricated with dispergation exhibited pH-independent stability, as validated by charge and size measurements. These physicochemical advantages lead to an ideal delivery platform.

PubMed Disclaimer

Publication types

LinkOut - more resources