Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Dec 5;266(34):23003-9.

Reconstitution and properties of homologous and chimeric HIV-1.HIV-2 p66.p51 reverse transcriptase

Affiliations
  • PMID: 1720776
Free article

Reconstitution and properties of homologous and chimeric HIV-1.HIV-2 p66.p51 reverse transcriptase

K J Howard et al. J Biol Chem. .
Free article

Abstract

Metal chelate affinity chromatography has been used to follow reconstitution of the 66- and 51-kDa human immunodeficiency (HIV)-1 and HIV-2 reverse transcriptase (RT) subunits into heterodimer, as well as chimeric enzymes comprised of heterologous subunits. By adding a small N-terminal polyhistidine extension to the 51-kDa subunit of either enzyme, reconstituted RT could be recovered from a cell lysate by chromatography on Ni(2+)-nitrilotriacetic acid-Sepharose. Homologous RT subunits rapidly associated to form the respective heterodimers (1-p66.1-p51 and 2-p66.2-p51) when bacterial lysates containing the individual components were mixed. Under the same conditions, association of p66 HIV-2 and p51 HIV-1 RT was inefficient and could be improved slightly by prolonged incubation of the respective p66 and p51 subunits. In contrast, HIV-1 p66 RT rapidly associated with the 51-kDa subunit of the HIV-2 enzyme. RNA-dependent DNA polymerase activity was associated with all reconstituted enzymes, and the response of each chimeric RT to an inhibitor selective for the HIV-1 enzyme indicated that sensitivity to inhibition was determined by the source of its 66-kDa subunit.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources