Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2007 Feb;41(4):935-45.
doi: 10.1016/j.watres.2006.11.013. Epub 2007 Jan 17.

Comparison of sulfonated and other micropollutants removal in membrane bioreactor and conventional wastewater treatment

Affiliations
Comparative Study

Comparison of sulfonated and other micropollutants removal in membrane bioreactor and conventional wastewater treatment

Heleen De Wever et al. Water Res. 2007 Feb.

Abstract

Membrane bioreactors (MBRs) were compared with conventional activated sludge systems (CAS) for micropollutant degradation, in laboratory-scale spiking experiments with synthetic and real domestic wastewater. The target micropollutants were polar in nature and represented a broad range in biodegradability. The experimental data indicated that MBR treatment could significantly enhance removal of the micropollutants 1,6- and 2,7-naphthalene disulfonate (NDSA) and benzothiazole-2-sulfonate. 1,5-NDSA, EDTA and diclofenac were not removed in either the MBR or the CAS. The other compounds were equally well degraded in both systems. For 1,3-naphthalene disulfonate, the existence of a minimum threshold level for degradation could be demonstrated. Although MBRs could not always make a difference in the overall removal efficiencies achieved, they showed reduced lag phases for degradation and a stronger memory effect, which implies that they may respond quicker to variable influent concentrations. Finally, micropollutant removal also turned out to be less sensitive to system operational variables.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources