Characterization and predictive discovery of evolutionarily conserved mammalian alternative promoters
- PMID: 17210929
- PMCID: PMC1781346
- DOI: 10.1101/gr.5872707
Characterization and predictive discovery of evolutionarily conserved mammalian alternative promoters
Abstract
Recent studies suggest that surprisingly many mammalian genes have alternative promoters (APs); however, their biological roles, and the characteristics that distinguish them from single promoters (SPs), remain poorly understood. We constructed a large data set of evolutionarily conserved promoters, and used it to identify sequence features, functional associations, and expression patterns that differ by promoter type. The four promoter categories CpG-rich APs, CpG-poor APs, CpG-rich SPs, and CpG-poor SPs each show characteristic strengths and patterns of sequence conservation, frequencies of putative transcription-related motifs, and tissue and developmental stage expression preferences. APs display substantially higher sequence conservation than SPs and CpG-poor promoters than CpG-rich promoters. Among CpG-poor promoters, APs and SPs show sharply contrasting developmental stage preferences and TATA box frequencies. We developed a discriminator to computationally predict promoter type, verified its accuracy through experimental tests that incorporate a novel method for deconvolving mixed sequence traces, and used it to find several new APs. The discriminator predicts that almost half of all mammalian genes have evolutionarily conserved APs. This high frequency of APs, together with the strong purifying selection maintaining them, implies a crucial role in expanding the expression diversity of the mammalian genome.
Figures
References
-
- Bird A.P. DNA methylation–how important in gene control? Nature. 1984;307:503–504. - PubMed
-
- Butler J.E., Kadonaga J.T., Kadonaga J.T. The RNA polymerase II core promoter: A key component in the regulation of gene expression. Genes & Dev. 2002;16:2583–2592. - PubMed
-
- Carninci P., Sandelin A., Lenhard B., Katayama S., Shimokawa K., Ponjavic J., Semple C.A., Taylor M.S., Engstrom P.G., Frith M.C., Sandelin A., Lenhard B., Katayama S., Shimokawa K., Ponjavic J., Semple C.A., Taylor M.S., Engstrom P.G., Frith M.C., Lenhard B., Katayama S., Shimokawa K., Ponjavic J., Semple C.A., Taylor M.S., Engstrom P.G., Frith M.C., Katayama S., Shimokawa K., Ponjavic J., Semple C.A., Taylor M.S., Engstrom P.G., Frith M.C., Shimokawa K., Ponjavic J., Semple C.A., Taylor M.S., Engstrom P.G., Frith M.C., Ponjavic J., Semple C.A., Taylor M.S., Engstrom P.G., Frith M.C., Semple C.A., Taylor M.S., Engstrom P.G., Frith M.C., Taylor M.S., Engstrom P.G., Frith M.C., Engstrom P.G., Frith M.C., Frith M.C., et al. Genome-wide analysis of mammalian promoter architecture and evolution. Nat. Genet. 2006;38:626–635. - PubMed
-
- Cooper S.J., Trinklein N.D., Anton E.D., Nguyen L., Myers R.M., Trinklein N.D., Anton E.D., Nguyen L., Myers R.M., Anton E.D., Nguyen L., Myers R.M., Nguyen L., Myers R.M., Myers R.M. Comprehensive analysis of transcriptional promoter structure and function in 1% of the human genome. Genome Res. 2006;16:1–10. - PMC - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous