Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Oct-Dec;50(4):311-6.

Pineal and cortical melatonin receptors MT1 and MT2 are decreased in Alzheimer's disease

Affiliations
  • PMID: 17213040
Free article

Pineal and cortical melatonin receptors MT1 and MT2 are decreased in Alzheimer's disease

P Brunner et al. Eur J Histochem. 2006 Oct-Dec.
Free article

Abstract

The pineal hormone melatonin is involved in physiological transduction of temporal information from the light dark cycle to circadian and seasonal behavioural rhythms, as well as possessing neuroprotective properties. Melatonin and its receptors MT1 and MT2, which belong to the family of G protein-coupled receptors, are impaired in Alzheimer's disease (AD) with severe consequences to neuropathology and clinical symptoms. The present data provides the first immunohistochemical evidence for the cellular localization of the both melatonin receptors in the human pineal gland and occipital cortex, and demonstrates their alterations in AD. We localized MT1 and MT2 in the pineal gland and occipital cortex of 7 elderly controls and 11 AD patients using immunohistochemistry with peroxidase-staining. In the pineal gland both MT1 and MT2 were localized to pinealocytes, whereas in the cortex both receptors were expressed in some pyramidal and non-pyramidal cells. In patients with AD, parallel to degenerative tissue changes, there was an overall decrease in the intensity of receptors in both brain regions. In line with our previous findings, melatonin receptor expression in AD is impaired in two additional brain areas, and may contribute to disease pathology.

PubMed Disclaimer

LinkOut - more resources