Mechanisms of bone remodeling during weight-bearing exercise
- PMID: 17213879
 - DOI: 10.1139/h06-051
 
Mechanisms of bone remodeling during weight-bearing exercise
Abstract
Exercise-induced mechanical loading can have potent effects on skeletal form and health. Both intrinsic and extrinsic factors contribute to bone structure and function. Mechanical simuli (e.g., strain magnitude, frequency, rate, and gradients, as well as fluid flow and shear stress) have potent influences on bone-cell cytoskeleton and associated signalling pathways. Although the immature skeleton may be more able to benefit from exercise, a skeletally mature population can also benefit from exercise programs aimed at increasing the functional loads to which the skeleton is exposed. The definitive explanation of mechanical-loading and (or) bone-cell mechanotransductive phenomena, however, remains elusive. Here, we briefly review the structural and anatomical foundation for bone adaptation, focusing on mechanical loading effects on bone, linked to the roles of integrins, cytoskeleton, membrane channels, and auto- and paracrine factors in bone modeling and remodeling.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical
