Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Dec;6(4):305-11.
doi: 10.2174/187153006779025748.

Signaling abnormalities in systemic lupus erythematosus as potential drug targets

Affiliations
Review

Signaling abnormalities in systemic lupus erythematosus as potential drug targets

David Fernandez et al. Endocr Metab Immune Disord Drug Targets. 2006 Dec.

Abstract

Systemic lupus erythematosus (SLE) is an autoimmune inflammatory disease characterized by T-cell, B-cell, and dendritic cell dysfunction and antinuclear autoantibody production. Much of the knowledge that has been gained about SLE in recent years is related to molecular signaling abnormalities present in the disease. Signaling through the T-cell receptor (TCR) is affected in SLE by alterations in the localization, amount, and activity of numerous protein kinases. TCR stimulation releases calcium from intracellular stores, which triggers an influx of extracellular calcium and activates the transcription of many genes, including interleukin-2. Short-term calcium fluxing is exaggerated in SLE, but long-term calcium fluxing is diminished and may account for sub-optimal interleukin-2 production. SLE T-cells have persistently hyperpolarized mitochondria associated with increased mitochondrial mass, high levels of reactive oxygen species (ROS) and low levels of ATP, which decrease activation-induced apoptosis and instead predispose T cells for necrosis, thus stimulating inflammation in SLE. The pentose phosphate pathway impacts the mitochondrial potential and represents a target for possible intervention. Nitric oxide (NO) is a potential link to tie together the signaling and mitochondrial abnormalities in SLE. NO-induced mitochondrial biogenesis recapitulates the TCR-stimulated calcium fluxing abnormalities of SLE T-cells. Since mitochondria can store calcium, the increase in mitochondrial mass may be implicated in the aberrant calcium fluxing in SLE T cells. The mammalian target of rapamycin senses the mitochondrial potential and regulates calcium release, serving as a novel target of treatment of SLE.

PubMed Disclaimer

Publication types

MeSH terms