Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Feb;134(4):723-34.
doi: 10.1242/dev.02765. Epub 2007 Jan 10.

Fibroblast growth factor receptor 2 tyrosine kinase is required for prostatic morphogenesis and the acquisition of strict androgen dependency for adult tissue homeostasis

Affiliations

Fibroblast growth factor receptor 2 tyrosine kinase is required for prostatic morphogenesis and the acquisition of strict androgen dependency for adult tissue homeostasis

Yongshun Lin et al. Development. 2007 Feb.

Abstract

The fibroblast growth factor (FGF) family consists of 22 members and regulates a broad spectrum of biological activities by activating diverse isotypes of FGF receptor tyrosine kinases (FGFRs). Among the FGFs, FGF7 and FGF10 have been implicated in the regulation of prostate development and prostate tissue homeostasis by signaling through the FGFR2 isoform. Using conditional gene ablation with the Cre-LoxP system in mice, we demonstrate a tissue-specific requirement for FGFR2 in urogenital epithelial cells--the precursors of prostatic epithelial cells--for prostatic branching morphogenesis and prostatic growth. Most Fgfr2 conditional null (Fgfr2(cn)) embryos developed only two dorsal prostatic (dp) and two lateral prostatic (lp) lobes. This contrasts to wild-type prostate, which has two anterior prostatic (ap), two dp, two lp and two ventral prostatic (vp) lobes. Unlike wild-type prostates, which are composed of well developed epithelial ductal networks, the Fgfr2(cn) prostates, despite retaining a compartmented tissue structure, exhibited a primitive epithelial architecture. Moreover, although Fgfr2(cn) prostates continued to produce secretory proteins in an androgen-dependent manner, they responded poorly to androgen with respect to tissue homeostasis. The results demonstrate that FGFR2 is important for prostate organogenesis and for the prostate to develop into a strictly androgen-dependent organ with respect to tissue homeostasis but not to the secretory function, implying that androgens may regulate tissue homeostasis and tissue function differently. Therefore, Fgfr2(cn) prostates provide a useful animal model for scrutinizing molecular mechanisms by which androgens regulate prostate growth, homeostasis and function, and may yield clues as to how advanced-tumor prostate cells escape strict androgen regulations.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources