Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Mar;97(3):1931-40.
doi: 10.1152/jn.00933.2006. Epub 2007 Jan 10.

Functional roles of Kv1 channels in neocortical pyramidal neurons

Affiliations
Free article

Functional roles of Kv1 channels in neocortical pyramidal neurons

D Guan et al. J Neurophysiol. 2007 Mar.
Free article

Abstract

Pyramidal neurons from layers II/III of somatosensory and motor cortex express multiple Kv1 alpha-subunits and a current sensitive to block by alpha-dendrotoxin (alpha-DTX). We examined functional roles of native Kv1 channels in these cells using current-clamp recordings in brain slices and current- and voltage-clamp recordings in dissociated cells. alpha-DTX caused a significant negative shift in voltage threshold for action potentials (APs) and reduced rheobase. Correspondingly, a ramp-voltage protocol revealed that the alpha-DTX-sensitive current activated at subthreshold voltages. AP width at threshold increased with successive APs during repetitive firing. The steady-state threshold width for a given firing rate was similar in control and alpha-DTX, despite an initially broader AP in alpha-DTX. AP voltage threshold increased similarly during a train of spikes under control conditions and in the presence of alpha-DTX. alpha-DTX had no effect on input resistance or resting membrane potential and modest effects on the amplitude or width of a single AP. Accordingly, experiments using AP waveforms (APWs) as voltage protocols revealed that alpha-DTX-sensitive current peaked late during the AP repolarization phase. Application of alpha-DTX increased the rate of firing to intracellular current injection and increased gain (multiplicative effects), but did not alter spike-frequency adaptation. Consistent with these findings, voltage-clamp experiments revealed that the proportion of outward current sensitive to alpha-DTX was highest during the interval between two APWs, reflecting slow deactivation kinetics at -50 mV. Finally, alpha-DTX did not alter the selectivity of pyramidal neurons for DC versus time-varying stimuli.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources