Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Apr;28(10):1787-97.
doi: 10.1016/j.biomaterials.2006.12.020. Epub 2006 Dec 21.

The regulation of integrin-mediated osteoblast focal adhesion and focal adhesion kinase expression by nanoscale topography

Affiliations

The regulation of integrin-mediated osteoblast focal adhesion and focal adhesion kinase expression by nanoscale topography

Jung Yul Lim et al. Biomaterials. 2007 Apr.

Abstract

An important consideration in developing physical biomimetic cell-stimulating cues is that the in vivo extracellular milieu includes nanoscale topographic interfaces. We investigated nanoscale topography regulation of cell functions using human fetal osteoblastic (hFOB) cell culture on poly(l-lactic acid) and polystyrene (50/50 w/w) demixed nanoscale pit textures (14, 29, and 45nm deep pits). Secondary ion mass spectroscopy revealed that these nanotopographic surfaces had similar surface chemistries to that of pure PLLA because of PLLA component surface segregation during spin casting. We observed that 14 and 29nm deep pit surfaces increased hFOB cell attachment, spreading, selective integrin subunit expression (e.g., alphav relative to alpha5, beta1, or beta3), focal adhesive paxillin protein synthesis and paxillin colocalization with cytoskeletal actin stress fibers, and focal adhesion kinase (FAK) and phosphorylated FAK (pY397) expression to a greater degree than did 45nm deep pits or flat PLLA surfaces. Considering the important role of integrin-mediated focal adhesion and intracellular signaling in anchorage-dependent cell function, our results suggest a mechanism by which nanostructured physical signals regulate cell function. Modulation of integrin-mediated focal adhesion and related cell signaling by altering nanoscale substrate topography will have powerful applications in biomaterials science and tissue engineering.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources