Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jan 12;128(1):71-83.
doi: 10.1016/j.cell.2006.10.047.

Increased myeloid cell responses to M-CSF and RANKL cause bone loss and inflammation in SH3BP2 "cherubism" mice

Affiliations
Free article

Increased myeloid cell responses to M-CSF and RANKL cause bone loss and inflammation in SH3BP2 "cherubism" mice

Yasuyoshi Ueki et al. Cell. .
Free article

Abstract

While studies of the adaptor SH3BP2 have implicated a role in receptor-mediated signaling in mast cells and lymphocytes, they have failed to identify its function or explain why SH3BP2 missense mutations cause bone loss and inflammation in patients with cherubism. We demonstrate that Sh3bp2 "cherubism" mice exhibit trabecular bone loss, TNF-alpha-dependent systemic inflammation, and cortical bone erosion. The mutant phenotype is lymphocyte independent and can be transferred to mice carrying wild-type Sh3bp2 alleles through mutant fetal liver cells. Mutant myeloid cells show increased responses to M-CSF and RANKL stimulation, and, through mechanisms of increased ERK 1/2 and SYK phosphorylation/activation, they form macrophages that express high levels of TNF-alpha and osteoclasts that are unusually large. M-CSF and RANKL stimulation of myeloid cells that overexpress wild-type SH3BP2 results in similar large osteoclasts. This indicates that the mutant phenotype reflects gain of SH3BP2 function and suggests that SH3BP2 is a critical regulator of myeloid cell responses to M-CSF and RANKL stimulation.

PubMed Disclaimer

Comment in

Publication types

MeSH terms