Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jan;39(1):123-30.
doi: 10.1249/01.mss.0000241639.97972.4a.

Sodium loading aids fluid balance and reduces physiological strain of trained men exercising in the heat

Affiliations

Sodium loading aids fluid balance and reduces physiological strain of trained men exercising in the heat

Stacy T Sims et al. Med Sci Sports Exerc. 2007 Jan.

Abstract

Purpose: This study was conducted to determine whether preexercise ingestion of a highly concentrated sodium beverage would increase plasma volume (PV) and reduce the physiological strain of moderately trained males running in the heat.

Methods: Eight endurance-trained (.VO2max: 58 mL.kg(-1).min(-1) (SD 5); 36 yr (SD 11)) runners completed this double-blind, crossover experiment. Runners ingested a high-sodium (High Na+: 164 mmol Na+.L(-1)) or low-sodium (Low Na+: 10 mmol Na+.L(-1)) beverage (10 mL.kg(-1)) before running to exhaustion at 70% .VO2max in warm conditions (32 degrees C, 50% RH, V(a) approximately equal to 1.5 m.s(-1)). Beverages (approximately 757 mL) were ingested in seven portions across 60 min beginning 105 min before exercise. Trials were separated by 1-3 wk. Heart rate and core and skin temperatures were measured throughout exercise. Urine and venous blood were sampled before and after drinking and exercise.

Results: High Na+ increased PV before exercise (4.5% (SD 3.7)), calculated from Hct and [Hb]), whereas Low Na+ did not (0.0% (SD 0.5); P = 0.04), and involved greater time to exercise termination in the six who stopped because of an ethical end point (core temperature 39.5 degrees C: 57.9 min (SD 6) vs 46.4 min (SD 4); P = 0.04) and those who were exhausted (96.1 min (SD 22) vs 75.3 min (SD 21); P = 0.03; High Na+ vs Low Na+, respectively). At equivalent times before exercise termination, High Na+ also resulted in lower core temperature (38.9 vs 39.3 degrees C; P = 0.00) and perceived exertion (P = 0.01) and a tendency for lower heart rate (164 vs 174 bpm; P = 0.08).

Conclusions: Preexercise ingestion of a high-sodium beverage increased plasma volume before exercise and involved less thermoregulatory and perceived strain during exercise and increased exercise capacity in warm conditions.

PubMed Disclaimer