Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 May;292(5):L1193-201.
doi: 10.1152/ajplung.00408.2006. Epub 2007 Jan 12.

Acute alcohol intoxication increases interleukin-18-mediated neutrophil infiltration and lung inflammation following burn injury in rats

Affiliations
Free article

Acute alcohol intoxication increases interleukin-18-mediated neutrophil infiltration and lung inflammation following burn injury in rats

Xiaoling Li et al. Am J Physiol Lung Cell Mol Physiol. 2007 May.
Free article

Abstract

In this study, we examined whether IL-18 plays a role in lung inflammation following alcohol (EtOH) and burn injury. Male rats ( approximately 250 g) were gavaged with EtOH to achieve a blood EtOH level of approximately 100 mg/dl before burn or sham injury ( approximately 12.5% total body surface area). Immediately after injury, rats were treated with vehicle, caspase-1 inhibitor AC-YVAD-CHO to block IL-18 production or with IL-18 neutralizing anti-IL-18 antibodies. In another group, rats were treated with anti-neutrophil antiserum approximately 16 h before injury to deplete neutrophils. On day 1 after injury, lung tissue IL-18, neutrophil chemokines (CINC-1/CINC-3), ICAM-1, neutrophil infiltration, MPO activity, and water content (i.e., edema) were significantly increased in rats receiving a combined insult of EtOH and burn injury compared with rats receiving either EtOH intoxication or burn injury alone. Treatment of rats with caspase-1 inhibitor prevented the increase in lung tissue IL-18, CINC-1, CINC-3, ICAM-1, MPO activity, and edema following EtOH and burn injury. The increase in lung IL-18, MPO, and edema was also prevented in rats treated with anti-IL-18 antibodies. Furthermore, administration of anti-neutrophil antiserum also attenuated the increase in lung MPO activity and edema, but did not prevent the increase in IL-18 levels following EtOH and burn injury. These findings suggest that acute EtOH intoxication before burn injury upregulates IL-18, which in turn contributes to increased neutrophil infiltration. Furthermore, the presence of neutrophils appears to be critical for IL-18-meditaed increased lung tissue edema following a combined insult of EtOH and burn injury.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources