De novo sphingolipid synthesis is essential for viability, but not for transport of glycosylphosphatidylinositol-anchored proteins, in African trypanosomes
- PMID: 17220466
- PMCID: PMC1828920
- DOI: 10.1128/EC.00283-06
De novo sphingolipid synthesis is essential for viability, but not for transport of glycosylphosphatidylinositol-anchored proteins, in African trypanosomes
Abstract
De novo sphingolipid synthesis is required for the exit of glycosylphosphatidylinositol (GPI)-anchored membrane proteins from the endoplasmic reticulum in yeast. Using a pharmacological approach, we test the generality of this phenomenon by analyzing the transport of GPI-anchored cargo in widely divergent eukaryotic systems represented by African trypanosomes and HeLa cells. Myriocin, which blocks the first step of sphingolipid synthesis (serine + palmitate --> 3-ketodihydrosphingosine), inhibited the growth of cultured bloodstream parasites, and growth was rescued with exogenous 3-ketodihydrosphingosine. Myriocin also blocked metabolic incorporation of [3H]serine into base-resistant sphingolipids. Biochemical analyses indicate that the radiolabeled lipids are not sphingomyelin or inositol phosphorylceramide, suggesting that bloodstream trypanosomes synthesize novel sphingolipids. Inhibition of de novo sphingolipid synthesis with myriocin had no adverse effect on either general secretory trafficking or GPI-dependent trafficking in trypanosomes, and similar results were obtained with HeLa cells. A mild effect on endocytosis was seen for bloodstream trypanosomes after prolonged incubation with myriocin. These results indicate that de novo synthesis of sphingolipids is not a general requirement for secretory trafficking in eukaryotic cells. However, in contrast to the closely related kinetoplastid Leishmania major, de novo sphingolipid synthesis is essential for the viability of bloodstream-stage African trypanosomes.
Figures








Similar articles
-
Sphingolipid synthesis is necessary for kinetoplast segregation and cytokinesis in Trypanosoma brucei.J Cell Sci. 2008 Feb 15;121(Pt 4):522-35. doi: 10.1242/jcs.016741. Epub 2008 Jan 29. J Cell Sci. 2008. PMID: 18230649
-
Glycosylphosphatidylinositol-dependent protein trafficking in bloodstream stage Trypanosoma brucei.Eukaryot Cell. 2003 Feb;2(1):76-83. doi: 10.1128/EC.2.1.76-83.2003. Eukaryot Cell. 2003. PMID: 12582124 Free PMC article.
-
GPI valence and the fate of secretory membrane proteins in African trypanosomes.J Cell Sci. 2005 Dec 1;118(Pt 23):5499-511. doi: 10.1242/jcs.02667. Epub 2005 Nov 15. J Cell Sci. 2005. PMID: 16291721
-
Surface coats and secretory trafficking in African trypanosomes.Curr Opin Microbiol. 1998 Aug;1(4):448-54. doi: 10.1016/s1369-5274(98)80064-7. Curr Opin Microbiol. 1998. PMID: 10066505 Review.
-
Form and function in the trypanosomal secretory pathway.Curr Opin Microbiol. 2012 Aug;15(4):463-8. doi: 10.1016/j.mib.2012.03.002. Epub 2012 Mar 23. Curr Opin Microbiol. 2012. PMID: 22445359 Free PMC article. Review.
Cited by
-
The lipidome of Crithidia fasiculataand its plasticity.Front Cell Infect Microbiol. 2022 Oct 28;12:945750. doi: 10.3389/fcimb.2022.945750. eCollection 2022. Front Cell Infect Microbiol. 2022. PMID: 36405970 Free PMC article.
-
Trypanosoma brucei: trypanosome-specific endoplasmic reticulum proteins involved in variant surface glycoprotein expression.Exp Parasitol. 2010 Jul;125(3):208-21. doi: 10.1016/j.exppara.2010.01.015. Epub 2010 Jan 28. Exp Parasitol. 2010. PMID: 20109450 Free PMC article.
-
Localization of serum resistance-associated protein in Trypanosoma brucei rhodesiense and transgenic Trypanosoma brucei brucei.Cell Microbiol. 2015 Oct;17(10):1523-35. doi: 10.1111/cmi.12454. Epub 2015 Jun 26. Cell Microbiol. 2015. PMID: 25924022 Free PMC article.
-
Streamlined architecture and glycosylphosphatidylinositol-dependent trafficking in the early secretory pathway of African trypanosomes.Mol Biol Cell. 2009 Nov;20(22):4739-50. doi: 10.1091/mbc.e09-07-0542. Epub 2009 Sep 16. Mol Biol Cell. 2009. PMID: 19759175 Free PMC article.
-
Identification and Characterization of FTY720 for the Treatment of Human African Trypanosomiasis.Antimicrob Agents Chemother. 2015 Dec 14;60(3):1859-61. doi: 10.1128/AAC.02116-15. Antimicrob Agents Chemother. 2015. PMID: 26666915 Free PMC article.
References
-
- Agusti, R., A. S. Couto, O. Campetella, A. C. C. Frasch, and R. M. de Lederkremer. 1998. Structure of the glycosylphosphatidylinositol-anchor of the trans-sialidase from Trypanosoma cruzi metacyclic trypomastigote forms. Mol. Biochem. Parasitol. 97:123-131. - PubMed
-
- Alexander, D. L., K. J. Schwartz, A. E. Balber, and J. D. Bangs. 2002. Developmentally regulated trafficking of the lysosomal membrane protein p67 in Trypanosoma brucei. J. Cell Sci. 115:3253-3263. - PubMed
-
- Bangs, J. D., E. M. Brouch, D. M. Ransom, and J. L. Roggy. 1996. A soluble secretory reporter system in Trypanosoma brucei: studies on endoplasmic reticulum targeting. J. Biol. Chem. 271:18387-18393. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources