Experimental investigations of nonlinearities and destruction mechanisms of an experimental phospholipid-based ultrasound contrast agent
- PMID: 17220727
- DOI: 10.1097/01.rli.0000251576.68097.d1
Experimental investigations of nonlinearities and destruction mechanisms of an experimental phospholipid-based ultrasound contrast agent
Erratum in
- Invest Radiol. 2011 Sep;46(9):600. Errico, Rosa Palmizio [corrected to Palmizio Errico, Rosa]
Abstract
Objectives: We sought to characterize the acoustical behavior of the experimental ultrasound contrast agent BR14 by determining the acoustic pressure threshold above which nonlinear oscillation becomes significant and investigating microbubble destruction mechanisms.
Materials and methods: We used a custom-designed in vitro setup to conduct broadband attenuation measurements at 3.5 MHz varying acoustic pressure (range, 50-190 kPa). We also performed granulometric analyses on contrast agent solutions to accurately measure microbubble size distribution and to evaluate insonification effects.
Results: Attenuation did not depend on acoustic pressure less than 100 kPa, indicating this pressure as the threshold for the appearance of microbubble nonlinear behavior. At the lowest excitation amplitude, attenuation increased during insonification, while, at higher excitation levels, the attenuation decreased over time, indicating microbubble destruction. The destruction rate changed with pressure amplitude suggesting different destruction mechanisms, as it was confirmed by granulometric analysis.
Conclusions: Microbubbles showed a linear behavior until 100 kPa, whereas beyond this value significant nonlinearities occurred. Observed destruction phenomena seem to be mainly due to gas diffusion and bubble fragmentation mechanisms.
Similar articles
-
Microbubble characterization through acoustically induced deflation.IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Jan;57(1):193-202. doi: 10.1109/TUFFC.2010.1398. IEEE Trans Ultrason Ferroelectr Freq Control. 2010. PMID: 20040446
-
High-speed optical observations of contrast agent destruction.Ultrasound Med Biol. 2005 Mar;31(3):391-9. doi: 10.1016/j.ultrasmedbio.2004.12.004. Ultrasound Med Biol. 2005. PMID: 15749563
-
Pressure-dependent attenuation and scattering of phospholipid-coated microbubbles at low acoustic pressures.Ultrasound Med Biol. 2009 Jan;35(1):102-11. doi: 10.1016/j.ultrasmedbio.2008.07.005. Epub 2008 Oct 2. Ultrasound Med Biol. 2009. PMID: 18829153
-
[Ultrasound contrast agents--physical basics].Radiologe. 2005 Jun;45(6):503-12. doi: 10.1007/s00117-005-1188-z. Radiologe. 2005. PMID: 15809841 Review. German.
-
A Review of Phospholipid Encapsulated Ultrasound Contrast Agent Microbubble Physics.Ultrasound Med Biol. 2019 Feb;45(2):282-300. doi: 10.1016/j.ultrasmedbio.2018.09.020. Epub 2018 Nov 7. Ultrasound Med Biol. 2019. PMID: 30413335 Review.
Cited by
-
Determination of the interfacial rheological properties of a poly(DL-lactic acid)-encapsulated contrast agent using in vitro attenuation and scattering.Ultrasound Med Biol. 2013 Jul;39(7):1277-91. doi: 10.1016/j.ultrasmedbio.2013.02.004. Epub 2013 May 1. Ultrasound Med Biol. 2013. PMID: 23643050 Free PMC article.
-
Acoustic attenuation by contrast agent microbubbles in superficial tissue markedly diminishes petechiae bioeffects in deep tissue.Invest Radiol. 2008 May;43(5):322-9. doi: 10.1097/RLI.0b013e318168c715. Invest Radiol. 2008. PMID: 18424953 Free PMC article.
-
Kinetics and Thermodynamics of Acoustic Release of Doxorubicin from Non-stabilized polymeric Micelles.Colloids Surf A Physicochem Eng Asp. 2010 Apr 20;359(1-3):18-24. doi: 10.1016/j.colsurfa.2010.01.044. Colloids Surf A Physicochem Eng Asp. 2010. PMID: 20495608 Free PMC article.
-
Encapsulated microbubbles and echogenic liposomes for contrast ultrasound imaging and targeted drug delivery.Comput Mech. 2014 Mar;53(3):413-435. doi: 10.1007/s00466-013-0962-4. Comput Mech. 2014. PMID: 26097272 Free PMC article.
-
Estimation of intra-operator variability in perfusion parameter measurements using DCE-US.World J Radiol. 2011 Mar 28;3(3):70-81. doi: 10.4329/wjr.v3.i3.70. World J Radiol. 2011. PMID: 21512654 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources