Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Feb;9(2):193-200.
doi: 10.1038/ncb1536. Epub 2007 Jan 14.

Chemotaxis in shallow gradients is mediated independently of PtdIns 3-kinase by biased choices between random protrusions

Affiliations

Chemotaxis in shallow gradients is mediated independently of PtdIns 3-kinase by biased choices between random protrusions

Natalie Andrew et al. Nat Cell Biol. 2007 Feb.

Abstract

Current models of eukaryotic chemotaxis propose that directional sensing causes localized generation of new pseudopods. However, quantitative analysis of pseudopod generation suggests a fundamentally different mechanism for chemotaxis in shallow gradients: first, pseudopods in multiple cell types are usually generated when existing ones bifurcate and are rarely made de novo; second, in Dictyostelium cells in shallow chemoattractant gradients, pseudopods are made at the same rate whether cells are moving up or down gradients. The location and direction of new pseudopods are random within the range allowed by bifurcation and are not oriented by chemoattractants. Thus, pseudopod generation is controlled independently of chemotactic signalling. Third, directional sensing is mediated by maintaining the most accurate existing pseudopod, rather than through the generation of new ones. Finally, the phosphatidylinositol 3-kinase (PI(3)K) inhibitor LY294002 affects the frequency of pseudopod generation, but not the accuracy of selection, suggesting that PI(3)K regulates the underlying mechanism of cell movement, rather than control of direction.

PubMed Disclaimer

Substances