Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Mar;74(4):730-8.
doi: 10.1007/s00253-006-0811-x. Epub 2007 Jan 13.

Permeability issues in whole-cell bioprocesses and cellular membrane engineering

Affiliations
Review

Permeability issues in whole-cell bioprocesses and cellular membrane engineering

Rachel Ruizhen Chen. Appl Microbiol Biotechnol. 2007 Mar.

Abstract

Nutrient uptake and waste excretion are among the many important functions of the cellular membrane. While permitting nutrients into the cell, the cellular membrane system evolves to guide against noxious agents present in the environment from entering the intracellular milieu. The semipermeable nature of the membrane is at odds with biomolecular engineers in their endeavor of using microbes as cell factory. The cellular membrane often retards the entry of substrate into the cellular systems and prevents the product from being released from the cellular system for an easy recovery. Consequently, productivities of whole-cell bioprocesses such as biocatalysis, fermentation, and bioremediations are severely compromised. For example, the rate of whole-cell biocatalysis is usually 1-2 orders of magnitude slower than that of the isolated enzymes. When product export cannot keep pace with the production rate, intracellular product accumulation quickly leads to a halt of production due to product inhibition. While permeabilization via chemical or physical treatment of cell membrane is effective in small-scale process, large-scale implementation is problematic. Molecular engineering approach recently emerged as a much better alternative. Armed with increasingly sophisticated tools, biomolecular engineers are following nature's ingenuity to derive satisfactory solutions to the permeability problem. This review highlights these exciting molecular engineering achievements.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources