Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007:58:267-94.
doi: 10.1146/annurev.arplant.58.032806.103754.

Alternative splicing of pre-messenger RNAs in plants in the genomic era

Affiliations
Review

Alternative splicing of pre-messenger RNAs in plants in the genomic era

Anireddy S N Reddy. Annu Rev Plant Biol. 2007.

Abstract

Primary transcripts (precursor-mRNAs) with introns can undergo alternative splicing to produce multiple transcripts from a single gene by differential use of splice sites, thereby increasing the transcriptome and proteome complexity within and between cells and tissues. Alternative splicing in plants is largely an unexplored area of gene expression, as this phenomenon used to be considered rare. However, recent genome-wide computational analyses have revealed that alternative splicing in flowering plants is far more prevalent than previously thought. Interestingly, pre-mRNAs of many spliceosomal proteins, especially serine/arginine-rich (SR) proteins, are extensively alternatively spliced. Furthermore, stresses have a dramatic effect on alternative splicing of pre-mRNAs including those that encode many spliceosomal proteins. Although the mechanisms that regulate alternative splicing in plants are largely unknown, several reports strongly suggest a key role for SR proteins in spliceosome assembly and regulated splicing. Recent studies suggest that alternative splicing in plants is an important posttranscriptional regulatory mechanism in modulating gene expression and eventually plant form and function.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources