Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jan 12:7:3.
doi: 10.1186/1471-2288-7-3.

Bivariate random-effects meta-analysis and the estimation of between-study correlation

Affiliations

Bivariate random-effects meta-analysis and the estimation of between-study correlation

Richard D Riley et al. BMC Med Res Methodol. .

Abstract

Background: When multiple endpoints are of interest in evidence synthesis, a multivariate meta-analysis can jointly synthesise those endpoints and utilise their correlation. A multivariate random-effects meta-analysis must incorporate and estimate the between-study correlation (rhoB).

Methods: In this paper we assess maximum likelihood estimation of a general normal model and a generalised model for bivariate random-effects meta-analysis (BRMA). We consider two applied examples, one involving a diagnostic marker and the other a surrogate outcome. These motivate a simulation study where estimation properties from BRMA are compared with those from two separate univariate random-effects meta-analyses (URMAs), the traditional approach.

Results: The normal BRMA model estimates rhoB as -1 in both applied examples. Analytically we show this is due to the maximum likelihood estimator sensibly truncating the between-study covariance matrix on the boundary of its parameter space. Our simulations reveal this commonly occurs when the number of studies is small or the within-study variation is relatively large; it also causes upwardly biased between-study variance estimates, which are inflated to compensate for the restriction on rhoB. Importantly, this does not induce any systematic bias in the pooled estimates and produces conservative standard errors and mean-square errors. Furthermore, the normal BRMA is preferable to two normal URMAs; the mean-square error and standard error of pooled estimates is generally smaller in the BRMA, especially given data missing at random. For meta-analysis of proportions we then show that a generalised BRMA model is better still. This correctly uses a binomial rather than normal distribution, and produces better estimates than the normal BRMA and also two generalised URMAs; however the model may sometimes not converge due to difficulties estimating rhoB.

Conclusion: A BRMA model offers numerous advantages over separate univariate synthesises; this paper highlights some of these benefits in both a normal and generalised modelling framework, and examines the estimation of between-study correlation to aid practitioners.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Profile log-likelihood for the between-study correlation from the general normal BRMA of the telomerase data.

Similar articles

Cited by

References

    1. Berkey CS, Hoaglin DC, Antczak-Bouckoms A, Mosteller F, Colditz GA. Meta-analysis of multiple outcomes by regression with random effects. Stat Med. 1998;17:2537–2550. doi: 10.1002/(SICI)1097-0258(19981130)17:22<2537::AID-SIM953>3.0.CO;2-C. - DOI - PubMed
    1. Hasselblad V. Meta-analysis of multitreatment studies. Med Decis Making. 1998;18:37–43. - PubMed
    1. Becker BJ, Tinsley HEA, Brown S. Multivariate Meta-analysis. San Diego , Academic Press; 2000.
    1. Van Houwelingen HC, Arends LR, Stijnen T. Advanced methods in meta-analysis: multivariate approach and meta-regression. Stat Med. 2002;21:589–624. doi: 10.1002/sim.1040. - DOI - PubMed
    1. Reitsma JB, Glas AS, Rutjes AW, Scholten RJ, Bossuyt PM, Zwinderman AH. Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. J Clin Epidemiol. 2005;58:982–990. doi: 10.1016/j.jclinepi.2005.02.022. - DOI - PubMed

Publication types

LinkOut - more resources