Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Apr;36(4):328-37.
doi: 10.1016/j.ijom.2006.09.023. Epub 2007 Jan 12.

Growth and differentiation of mouse osteoblasts on chitosan-collagen sponges

Affiliations

Growth and differentiation of mouse osteoblasts on chitosan-collagen sponges

P Arpornmaeklong et al. Int J Oral Maxillofac Surg. 2007 Apr.

Abstract

The aim of this study was to investigate the effects of collagen on the microstructure and biocompatibility of chitosan-collagen composite sponges fabricated by a freezing and drying technique. The study was categorized into four groups: Group I: collagen; Group II: chitosan; Group III: 1:1 (by wt) chitosan-collagen and Group IV: 1:2 (by wt) chitosan-collagen sponges. A mouse osteoblast cell line, MC3T3-E1, was cultivated on the sponges in a mineralized culture medium for 21 days. Microstructure of scaffolds and growth of cells on the sponges were examined using scanning electron and confocal laser scanning electron microscopes. Pore size was analysed from scanning electron microscope images using Image-Pro Plus image analysis software. Cell viability (MTT assay), alkaline phosphatase activity and levels of osteocalcin and calcium were monitored every 3 days and on days 15 and 21, respectively. It was found that the sponges were porous with average pore sizes of 80-100 microm. A combination of chitosan and collagen matrixes created a well defined porous microstructure and biocompatible scaffolds. Chitosan-collagen composite sponges promoted growth and differentiation of osteoblasts into the mature stage. To optimize application of the composite sponges in bone regeneration, the fabrication process must be improved to increase the pore size of the scaffolds.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources