Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2006 Dec;71(12):1377-84.
doi: 10.1134/s0006297906120145.

Stability of plant mRNAs depends on the length of the 3'-untranslated region

Affiliations
Comparative Study

Stability of plant mRNAs depends on the length of the 3'-untranslated region

A M Schwartz et al. Biochemistry (Mosc). 2006 Dec.

Abstract

Eukaryotic mRNAs that prematurely terminate translation are recognized and degraded by nonsense mediated decay (NMD). This degradation pathway is well studied in animal and yeast cells. The data available imply that NMD also takes place in plants. However, the molecular mechanism of recognition and degradation of plant RNAs containing premature terminator codon (PTC) is not known. Here we report that in plant cells this mechanism involves the recognition of the sizes of the 3'-untranslated regions (3'UTR). Plant 3'UTRs longer than 300 nucleotides induce mRNA instability. Contrary to mammalian and yeast cells, this destabilization does not depend on the presence of any specific sequences downstream of the terminator codon. Unlike nuclear-produced mRNAs, plant virus vector long 3'UTR-containing RNAs, which are synthesized directly in the cytoplasm, are stable and translated efficiently. This shows that RNAs produced in the cytoplasm by viral RNA-dependent RNA polymerase are able to avoid the proposed mechanism.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources