Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jan;54(1):23-31.
doi: 10.1109/tuffc.2007.208.

Three-dimensional spatial and temporal temperature imaging in gel phantoms using backscattered ultrasound

Affiliations

Three-dimensional spatial and temporal temperature imaging in gel phantoms using backscattered ultrasound

Ajay Anand et al. IEEE Trans Ultrason Ferroelectr Freq Control. 2007 Jan.

Abstract

Thermal therapies such as radio frequency, heated saline, and high-intensity focused ultrasound ablations are often performed suboptimally due to the inability to monitor the spatial and temporal distribution of delivered heat and the extent of tissue necrosis. Ultrasound-based temperature imaging recently was proposed as a means to measure noninvasively the deposition of heat by tracking the echo arrival time shifts in the ultrasound backscatter caused by changes in speed of sound and tissue thermal expansion. However, the clinical applicability of these techniques has been hampered by the two-dimensional (2-D) nature of traditional ultrasound imaging, and the complexity of the temperature dependence of sound speed for biological tissues. In this paper, we present methodology, results, and validation of a 3-D spatial and temporal ultrasound temperature estimation technique in an alginate-based gel phantom to track the evolution of heat deposition over a treatment volume. The technique was experimentally validated for temperature rises up to approximately 10 degrees C by comparison with measurements from thermocouples that were embedded in the gel. Good agreement (rms difference = 0.12 degrees C, maximum difference = 0.24 degrees C) was observed between the noninvasive ultrasound temperature estimates and thermocouple measurements. Based on the results obtained for the temperature range studied in this paper, the technique demonstrates potential for applicability in image guidance of thermal therapy for determining the location of the therapeutic focal spot and assessing the extent of the heated region at subablative intensities.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources