Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Nov;56(1-2):19-28.
doi: 10.1016/0378-5955(91)90149-4.

Stretch-activated ion channels in guinea pig outer hair cells

Affiliations

Stretch-activated ion channels in guinea pig outer hair cells

J P Ding et al. Hear Res. 1991 Nov.

Abstract

Two types of stretch-activated (SA) ion channels have been found in the lateral wall of isolated outer hair cells (OHC) from the guinea pig cochlea. One type had a reversal potential of -12 mV and was non-selective to cations, passing Ca2+ as well as monovalent ions. The channel had a conductance of 38-50 pS and the amplitude of the current through the open SA channel was independent of suction. The probability of the channel being open increased with applied suction and was voltage dependent with the maximum probability occurring at pipette potentials of -40 to -60 mV. The second type of SA channel had a conductance of approximately 150 pS and a reversal potential of approximately -50 mV. The ionic selectivity of this channel has not yet been determined, but it is probably K+ selective. OHCs have been shown to undergo a slow change in length in response to acoustic stimulation directed at the lateral wall of the OHC. The SA channels reported here could affect the motile response by altering the membrane potential or by allowing the entry of free Ca2+ which could lead to a change in OHC length through the interaction of actin and myosin. SA channels could also play an important role in regulating the osmotic pressure of OHC thereby influencing its electro-mechanical response.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources