Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 May 30;80(24-25):2199-201.
doi: 10.1016/j.lfs.2006.11.052. Epub 2006 Dec 14.

Apoptosis in sulfur mustard treated A549 cell cultures

Affiliations

Apoptosis in sulfur mustard treated A549 cell cultures

D Steinritz et al. Life Sci. .

Abstract

The chemical warfare agent sulfur mustard (SM) is a strong alkylating agent that leads to erythema and ulceration of the human skin several hours after exposure. Although SM has been intensively investigated, the cellular mechanisms leading to cell damage remain unclear. Apoptosis, necrosis and direct cell damage are discussed. In this study we investigated apoptotic cell death in pulmonary A549 cells exposed to SM (30-1000 microM, 30 min). 24 h after SM exposure DNA breaks were stained with the TUNEL method. Additionally, A549 cells were lysed and cellular protein was transferred to SDS page and blotted. Whole PARP as well as PARP cleavage into the p89 fragment, an indicator of apoptosis, were detected by specific antibodies. SM concentration dependent increase in TUNEL positive cells and PARP cleavage showed that SM is an inducer of apoptosis. It has been previously suggested that AChE is activated during apoptotic processes and may be involved in apoptosis regulation. Therefore, we examined AChE activity in A549 cells upon induction of apoptosis by SM (100-500 microM). Increased AChE activity was found in SM treated A549 cell cultures examined as determined by the Ellman's assay and by western blot. AChE activity showed a strong correlation with TUNEL positive cells. However, the broad caspase inhibitor zVAD and the PARP-inhibitor 3-aminobenzamide had no protective effect on A459 cells measured with AChE activity and frequency of TUNEL positive cells. In summary, our studies demonstrate that AChE activity may be a potential marker of apoptosis in A549 cells after SM injury. To what extent AChE is involved in apoptosis regulation during SM poisoning has to be further investigated.

PubMed Disclaimer

MeSH terms

LinkOut - more resources