Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Mar;97(3):2385-93.
doi: 10.1152/jn.01191.2006. Epub 2007 Jan 17.

Involvement of persistent Na+ current in spike initiation in primary sensory neurons of the rat mesencephalic trigeminal nucleus

Affiliations
Free article

Involvement of persistent Na+ current in spike initiation in primary sensory neurons of the rat mesencephalic trigeminal nucleus

Youngnam Kang et al. J Neurophysiol. 2007 Mar.
Free article

Abstract

It was recently shown that the persistent Na(+) current (I(NaP)) is generated in the proximal axon in response to somatic depolarization in neocortical pyramidal neurons, although the involvement of I(NaP) in spike initiation is still unclear. Here we show a potential role of I(NaP) in spike initiation of primary sensory neurons in the mesencephalic trigeminal nucleus (MTN) that display a backpropagation of the spike initiated in the stem axon toward the soma in response to soma depolarization. Riluzole (10 muM) and tetrodotoxin (TTX, 10 nM) caused an activation delay or a stepwise increase in the threshold for evoking soma spikes (S-spikes) without affecting the spike itself. Simultaneous patch-clamp recordings from the soma and axon hillock (AH) revealed that bath application of 50 nM TTX increased the delay in spike activation in response to soma depolarization, leaving the spike-backpropagation time from the AH to soma unchanged. This indicates that the increase in activation delay occurred in the stem axon. Furthermore, under a decreasing intracellular concentration gradient of QX-314 from the soma to AH created by QX-314-containing and QX-314-free patch pipettes, the amplitude and maximum rate of rise (MRR) of AH-spikes decreased with an increase in the activation delay following repetition of current-pulse injections, whereas S-spikes displayed decreases of considerably lesser degree in amplitude and MRR. This suggests that compared to S-spikes, AH-spikes more accurately reflect the attenuation of axonal spike by QX-314, consistent with the nature of spike backpropagation. These observations strongly suggest that low-voltage-activated I(NaP) is involved in spike initiation in the stem axon of MTN neurons.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources