Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Oct 6;8(4):E632-43.
doi: 10.1208/aapsj080472.

NAD metabolism and sirtuins: metabolic regulation of protein deacetylation in stress and toxicity

Affiliations
Review

NAD metabolism and sirtuins: metabolic regulation of protein deacetylation in stress and toxicity

Tianle Yang et al. AAPS J. .

Abstract

Sirtuins are recently discovered NAD(+)-dependent deacetylases that remove acetyl groups from acetyllysine-modified proteins, thereby regulating the biological function of their targets. Sirtuins have been shown to increase organism and tissue survival in diverse organisms, ranging from yeast to mammals. Evidence indicates that NAD(+) metabolism and sirtuins contribute to mechanisms that influence cell survival under conditions of stress and toxicity. For example, recent work has shown that sirtuins and increased NAD(+) biosynthesis provide protection against neuron axonal degeneration initiated by genotoxicity or trauma. In light of their protective effects, sirtuins and NAD(+) metabolism could represent therapeutic targets for treatment of acute and chronic neurodegenerative conditions. Our work has focused on elucidating the enzymatic functions of sirtuins and quantifying perturbations of cellular NAD(+) metabolism. We have developed mass spectrometry methods to quantitate cellular NAD(+) and nicotinamide. These methods allow the quantitation of changes in the amounts of these metabolites in cells caused by chemical and genetic interventions. Characterization of the biochemical properties of sirtuins and investigations of NAD(+) metabolism are likely to provide new insights into mechanisms by which NAD(+) metabolism regulates sirtuin activities in cells. To develop new strategies to improve cell stress resistance, we have initiated proof of concept studies on pharmacological approaches that target sirtuins and NAD(+) metabolism, with the goal of enhancing cell protection against genotoxicity.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Morris BJ. A forkhead in the road to longevity: the molecular basis of lifespan becomes clearer. J Hypertens. 2005;23:1285–1309. doi: 10.1097/01.hjh.0000173509.45363.dd. - DOI - PubMed
    1. Mattson MP, Magnus T. Ageing and neuronal vulnerability. Nat Rev Neurosci. 2006;7:278–294. doi: 10.1038/nrn1886. - DOI - PMC - PubMed
    1. Mattson MP, Chan SL, Duan W. Modification of brain aging and neurodegenerative disorders by genes, diet, and behavior. Physiol Rev. 2002;82:637–672. - PubMed
    1. Ingram DK, Zhu M, Mamczarz J, et al. Calorie restriction mimetics: an emerging research field. Aging Cell. 2006;5:97–108. doi: 10.1111/j.1474-9726.2006.00202.x. - DOI - PubMed
    1. Guarente L, Imai S, Armstrong CM, Kaeberlein M. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 2000;403:795–800. doi: 10.1038/35001622. - DOI - PubMed

Publication types

LinkOut - more resources